Metamath Proof Explorer


Definition df-hodif

Description: Define the difference of two Hilbert space operators. Definition of Beran p. 111. (Contributed by NM, 9-Nov-2000) (New usage is discouraged.)

Ref Expression
Assertion df-hodif op = ( 𝑓 ∈ ( ℋ ↑m ℋ ) , 𝑔 ∈ ( ℋ ↑m ℋ ) ↦ ( 𝑥 ∈ ℋ ↦ ( ( 𝑓𝑥 ) − ( 𝑔𝑥 ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 chod op
1 vf 𝑓
2 chba
3 cmap m
4 2 2 3 co ( ℋ ↑m ℋ )
5 vg 𝑔
6 vx 𝑥
7 1 cv 𝑓
8 6 cv 𝑥
9 8 7 cfv ( 𝑓𝑥 )
10 cmv
11 5 cv 𝑔
12 8 11 cfv ( 𝑔𝑥 )
13 9 12 10 co ( ( 𝑓𝑥 ) − ( 𝑔𝑥 ) )
14 6 2 13 cmpt ( 𝑥 ∈ ℋ ↦ ( ( 𝑓𝑥 ) − ( 𝑔𝑥 ) ) )
15 1 5 4 4 14 cmpo ( 𝑓 ∈ ( ℋ ↑m ℋ ) , 𝑔 ∈ ( ℋ ↑m ℋ ) ↦ ( 𝑥 ∈ ℋ ↦ ( ( 𝑓𝑥 ) − ( 𝑔𝑥 ) ) ) )
16 0 15 wceq op = ( 𝑓 ∈ ( ℋ ↑m ℋ ) , 𝑔 ∈ ( ℋ ↑m ℋ ) ↦ ( 𝑥 ∈ ℋ ↦ ( ( 𝑓𝑥 ) − ( 𝑔𝑥 ) ) ) )