Description: Define the hom-set component of a category. (Contributed by Mario Carneiro, 2-Jan-2017) Use its index-independent form homid instead. (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | df-hom | ⊢ Hom = Slot ; 1 4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | chom | ⊢ Hom | |
1 | c1 | ⊢ 1 | |
2 | c4 | ⊢ 4 | |
3 | 1 2 | cdc | ⊢ ; 1 4 |
4 | 3 | cslot | ⊢ Slot ; 1 4 |
5 | 0 4 | wceq | ⊢ Hom = Slot ; 1 4 |