Metamath Proof Explorer


Definition df-homf

Description: Define the functionalized Hom-set operator, which is exactly like Hom but is guaranteed to be a function on the base. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Assertion df-homf Homf = ( 𝑐 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑐 ) , 𝑦 ∈ ( Base ‘ 𝑐 ) ↦ ( 𝑥 ( Hom ‘ 𝑐 ) 𝑦 ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 chomf Homf
1 vc 𝑐
2 cvv V
3 vx 𝑥
4 cbs Base
5 1 cv 𝑐
6 5 4 cfv ( Base ‘ 𝑐 )
7 vy 𝑦
8 3 cv 𝑥
9 chom Hom
10 5 9 cfv ( Hom ‘ 𝑐 )
11 7 cv 𝑦
12 8 11 10 co ( 𝑥 ( Hom ‘ 𝑐 ) 𝑦 )
13 3 7 6 6 12 cmpo ( 𝑥 ∈ ( Base ‘ 𝑐 ) , 𝑦 ∈ ( Base ‘ 𝑐 ) ↦ ( 𝑥 ( Hom ‘ 𝑐 ) 𝑦 ) )
14 1 2 13 cmpt ( 𝑐 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑐 ) , 𝑦 ∈ ( Base ‘ 𝑐 ) ↦ ( 𝑥 ( Hom ‘ 𝑐 ) 𝑦 ) ) )
15 0 14 wceq Homf = ( 𝑐 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑐 ) , 𝑦 ∈ ( Base ‘ 𝑐 ) ↦ ( 𝑥 ( Hom ‘ 𝑐 ) 𝑦 ) ) )