Description: Define the functionalized Hom-set operator, which is exactly like Hom but is guaranteed to be a function on the base. (Contributed by Mario Carneiro, 4-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-homf | ⊢ Homf = ( 𝑐 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑐 ) , 𝑦 ∈ ( Base ‘ 𝑐 ) ↦ ( 𝑥 ( Hom ‘ 𝑐 ) 𝑦 ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 0 | chomf | ⊢ Homf | |
| 1 | vc | ⊢ 𝑐 | |
| 2 | cvv | ⊢ V | |
| 3 | vx | ⊢ 𝑥 | |
| 4 | cbs | ⊢ Base | |
| 5 | 1 | cv | ⊢ 𝑐 | 
| 6 | 5 4 | cfv | ⊢ ( Base ‘ 𝑐 ) | 
| 7 | vy | ⊢ 𝑦 | |
| 8 | 3 | cv | ⊢ 𝑥 | 
| 9 | chom | ⊢ Hom | |
| 10 | 5 9 | cfv | ⊢ ( Hom ‘ 𝑐 ) | 
| 11 | 7 | cv | ⊢ 𝑦 | 
| 12 | 8 11 10 | co | ⊢ ( 𝑥 ( Hom ‘ 𝑐 ) 𝑦 ) | 
| 13 | 3 7 6 6 12 | cmpo | ⊢ ( 𝑥 ∈ ( Base ‘ 𝑐 ) , 𝑦 ∈ ( Base ‘ 𝑐 ) ↦ ( 𝑥 ( Hom ‘ 𝑐 ) 𝑦 ) ) | 
| 14 | 1 2 13 | cmpt | ⊢ ( 𝑐 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑐 ) , 𝑦 ∈ ( Base ‘ 𝑐 ) ↦ ( 𝑥 ( Hom ‘ 𝑐 ) 𝑦 ) ) ) | 
| 15 | 0 14 | wceq | ⊢ Homf = ( 𝑐 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑐 ) , 𝑦 ∈ ( Base ‘ 𝑐 ) ↦ ( 𝑥 ( Hom ‘ 𝑐 ) 𝑦 ) ) ) |