Description: Define the functionalized Hom-set operator, which is exactly like Hom but is guaranteed to be a function on the base. (Contributed by Mario Carneiro, 4-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | df-homf | ⊢ Homf = ( 𝑐 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑐 ) , 𝑦 ∈ ( Base ‘ 𝑐 ) ↦ ( 𝑥 ( Hom ‘ 𝑐 ) 𝑦 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | chomf | ⊢ Homf | |
1 | vc | ⊢ 𝑐 | |
2 | cvv | ⊢ V | |
3 | vx | ⊢ 𝑥 | |
4 | cbs | ⊢ Base | |
5 | 1 | cv | ⊢ 𝑐 |
6 | 5 4 | cfv | ⊢ ( Base ‘ 𝑐 ) |
7 | vy | ⊢ 𝑦 | |
8 | 3 | cv | ⊢ 𝑥 |
9 | chom | ⊢ Hom | |
10 | 5 9 | cfv | ⊢ ( Hom ‘ 𝑐 ) |
11 | 7 | cv | ⊢ 𝑦 |
12 | 8 11 10 | co | ⊢ ( 𝑥 ( Hom ‘ 𝑐 ) 𝑦 ) |
13 | 3 7 6 6 12 | cmpo | ⊢ ( 𝑥 ∈ ( Base ‘ 𝑐 ) , 𝑦 ∈ ( Base ‘ 𝑐 ) ↦ ( 𝑥 ( Hom ‘ 𝑐 ) 𝑦 ) ) |
14 | 1 2 13 | cmpt | ⊢ ( 𝑐 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑐 ) , 𝑦 ∈ ( Base ‘ 𝑐 ) ↦ ( 𝑥 ( Hom ‘ 𝑐 ) 𝑦 ) ) ) |
15 | 0 14 | wceq | ⊢ Homf = ( 𝑐 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑐 ) , 𝑦 ∈ ( Base ‘ 𝑐 ) ↦ ( 𝑥 ( Hom ‘ 𝑐 ) 𝑦 ) ) ) |