Metamath Proof Explorer


Definition df-homul

Description: Define the scalar product with a Hilbert space operator. Definition of Beran p. 111. (Contributed by NM, 20-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion df-homul ·op = ( 𝑓 ∈ ℂ , 𝑔 ∈ ( ℋ ↑m ℋ ) ↦ ( 𝑥 ∈ ℋ ↦ ( 𝑓 · ( 𝑔𝑥 ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 chot ·op
1 vf 𝑓
2 cc
3 vg 𝑔
4 chba
5 cmap m
6 4 4 5 co ( ℋ ↑m ℋ )
7 vx 𝑥
8 1 cv 𝑓
9 csm ·
10 3 cv 𝑔
11 7 cv 𝑥
12 11 10 cfv ( 𝑔𝑥 )
13 8 12 9 co ( 𝑓 · ( 𝑔𝑥 ) )
14 7 4 13 cmpt ( 𝑥 ∈ ℋ ↦ ( 𝑓 · ( 𝑔𝑥 ) ) )
15 1 3 2 6 14 cmpo ( 𝑓 ∈ ℂ , 𝑔 ∈ ( ℋ ↑m ℋ ) ↦ ( 𝑥 ∈ ℋ ↦ ( 𝑓 · ( 𝑔𝑥 ) ) ) )
16 0 15 wceq ·op = ( 𝑓 ∈ ℂ , 𝑔 ∈ ( ℋ ↑m ℋ ) ↦ ( 𝑥 ∈ ℋ ↦ ( 𝑓 · ( 𝑔𝑥 ) ) ) )