Description: Define the sum of two Hilbert space operators. Definition of Beran p. 111. (Contributed by NM, 9-Nov-2000) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | df-hosum | ⊢ +op = ( 𝑓 ∈ ( ℋ ↑m ℋ ) , 𝑔 ∈ ( ℋ ↑m ℋ ) ↦ ( 𝑥 ∈ ℋ ↦ ( ( 𝑓 ‘ 𝑥 ) +ℎ ( 𝑔 ‘ 𝑥 ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | chos | ⊢ +op | |
1 | vf | ⊢ 𝑓 | |
2 | chba | ⊢ ℋ | |
3 | cmap | ⊢ ↑m | |
4 | 2 2 3 | co | ⊢ ( ℋ ↑m ℋ ) |
5 | vg | ⊢ 𝑔 | |
6 | vx | ⊢ 𝑥 | |
7 | 1 | cv | ⊢ 𝑓 |
8 | 6 | cv | ⊢ 𝑥 |
9 | 8 7 | cfv | ⊢ ( 𝑓 ‘ 𝑥 ) |
10 | cva | ⊢ +ℎ | |
11 | 5 | cv | ⊢ 𝑔 |
12 | 8 11 | cfv | ⊢ ( 𝑔 ‘ 𝑥 ) |
13 | 9 12 10 | co | ⊢ ( ( 𝑓 ‘ 𝑥 ) +ℎ ( 𝑔 ‘ 𝑥 ) ) |
14 | 6 2 13 | cmpt | ⊢ ( 𝑥 ∈ ℋ ↦ ( ( 𝑓 ‘ 𝑥 ) +ℎ ( 𝑔 ‘ 𝑥 ) ) ) |
15 | 1 5 4 4 14 | cmpo | ⊢ ( 𝑓 ∈ ( ℋ ↑m ℋ ) , 𝑔 ∈ ( ℋ ↑m ℋ ) ↦ ( 𝑥 ∈ ℋ ↦ ( ( 𝑓 ‘ 𝑥 ) +ℎ ( 𝑔 ‘ 𝑥 ) ) ) ) |
16 | 0 15 | wceq | ⊢ +op = ( 𝑓 ∈ ( ℋ ↑m ℋ ) , 𝑔 ∈ ( ℋ ↑m ℋ ) ↦ ( 𝑥 ∈ ℋ ↦ ( ( 𝑓 ‘ 𝑥 ) +ℎ ( 𝑔 ‘ 𝑥 ) ) ) ) |