| Step |
Hyp |
Ref |
Expression |
| 0 |
|
chpg |
⊢ hpG |
| 1 |
|
vg |
⊢ 𝑔 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
vd |
⊢ 𝑑 |
| 4 |
|
clng |
⊢ LineG |
| 5 |
1
|
cv |
⊢ 𝑔 |
| 6 |
5 4
|
cfv |
⊢ ( LineG ‘ 𝑔 ) |
| 7 |
6
|
crn |
⊢ ran ( LineG ‘ 𝑔 ) |
| 8 |
|
va |
⊢ 𝑎 |
| 9 |
|
vb |
⊢ 𝑏 |
| 10 |
|
cbs |
⊢ Base |
| 11 |
5 10
|
cfv |
⊢ ( Base ‘ 𝑔 ) |
| 12 |
|
vp |
⊢ 𝑝 |
| 13 |
|
citv |
⊢ Itv |
| 14 |
5 13
|
cfv |
⊢ ( Itv ‘ 𝑔 ) |
| 15 |
|
vi |
⊢ 𝑖 |
| 16 |
|
vc |
⊢ 𝑐 |
| 17 |
12
|
cv |
⊢ 𝑝 |
| 18 |
8
|
cv |
⊢ 𝑎 |
| 19 |
3
|
cv |
⊢ 𝑑 |
| 20 |
17 19
|
cdif |
⊢ ( 𝑝 ∖ 𝑑 ) |
| 21 |
18 20
|
wcel |
⊢ 𝑎 ∈ ( 𝑝 ∖ 𝑑 ) |
| 22 |
16
|
cv |
⊢ 𝑐 |
| 23 |
22 20
|
wcel |
⊢ 𝑐 ∈ ( 𝑝 ∖ 𝑑 ) |
| 24 |
21 23
|
wa |
⊢ ( 𝑎 ∈ ( 𝑝 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑝 ∖ 𝑑 ) ) |
| 25 |
|
vt |
⊢ 𝑡 |
| 26 |
25
|
cv |
⊢ 𝑡 |
| 27 |
15
|
cv |
⊢ 𝑖 |
| 28 |
18 22 27
|
co |
⊢ ( 𝑎 𝑖 𝑐 ) |
| 29 |
26 28
|
wcel |
⊢ 𝑡 ∈ ( 𝑎 𝑖 𝑐 ) |
| 30 |
29 25 19
|
wrex |
⊢ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑎 𝑖 𝑐 ) |
| 31 |
24 30
|
wa |
⊢ ( ( 𝑎 ∈ ( 𝑝 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑝 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑎 𝑖 𝑐 ) ) |
| 32 |
9
|
cv |
⊢ 𝑏 |
| 33 |
32 20
|
wcel |
⊢ 𝑏 ∈ ( 𝑝 ∖ 𝑑 ) |
| 34 |
33 23
|
wa |
⊢ ( 𝑏 ∈ ( 𝑝 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑝 ∖ 𝑑 ) ) |
| 35 |
32 22 27
|
co |
⊢ ( 𝑏 𝑖 𝑐 ) |
| 36 |
26 35
|
wcel |
⊢ 𝑡 ∈ ( 𝑏 𝑖 𝑐 ) |
| 37 |
36 25 19
|
wrex |
⊢ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑏 𝑖 𝑐 ) |
| 38 |
34 37
|
wa |
⊢ ( ( 𝑏 ∈ ( 𝑝 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑝 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑏 𝑖 𝑐 ) ) |
| 39 |
31 38
|
wa |
⊢ ( ( ( 𝑎 ∈ ( 𝑝 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑝 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑝 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑝 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑏 𝑖 𝑐 ) ) ) |
| 40 |
39 16 17
|
wrex |
⊢ ∃ 𝑐 ∈ 𝑝 ( ( ( 𝑎 ∈ ( 𝑝 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑝 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑝 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑝 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑏 𝑖 𝑐 ) ) ) |
| 41 |
40 15 14
|
wsbc |
⊢ [ ( Itv ‘ 𝑔 ) / 𝑖 ] ∃ 𝑐 ∈ 𝑝 ( ( ( 𝑎 ∈ ( 𝑝 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑝 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑝 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑝 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑏 𝑖 𝑐 ) ) ) |
| 42 |
41 12 11
|
wsbc |
⊢ [ ( Base ‘ 𝑔 ) / 𝑝 ] [ ( Itv ‘ 𝑔 ) / 𝑖 ] ∃ 𝑐 ∈ 𝑝 ( ( ( 𝑎 ∈ ( 𝑝 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑝 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑝 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑝 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑏 𝑖 𝑐 ) ) ) |
| 43 |
42 8 9
|
copab |
⊢ { 〈 𝑎 , 𝑏 〉 ∣ [ ( Base ‘ 𝑔 ) / 𝑝 ] [ ( Itv ‘ 𝑔 ) / 𝑖 ] ∃ 𝑐 ∈ 𝑝 ( ( ( 𝑎 ∈ ( 𝑝 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑝 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑝 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑝 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑏 𝑖 𝑐 ) ) ) } |
| 44 |
3 7 43
|
cmpt |
⊢ ( 𝑑 ∈ ran ( LineG ‘ 𝑔 ) ↦ { 〈 𝑎 , 𝑏 〉 ∣ [ ( Base ‘ 𝑔 ) / 𝑝 ] [ ( Itv ‘ 𝑔 ) / 𝑖 ] ∃ 𝑐 ∈ 𝑝 ( ( ( 𝑎 ∈ ( 𝑝 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑝 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑝 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑝 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑏 𝑖 𝑐 ) ) ) } ) |
| 45 |
1 2 44
|
cmpt |
⊢ ( 𝑔 ∈ V ↦ ( 𝑑 ∈ ran ( LineG ‘ 𝑔 ) ↦ { 〈 𝑎 , 𝑏 〉 ∣ [ ( Base ‘ 𝑔 ) / 𝑝 ] [ ( Itv ‘ 𝑔 ) / 𝑖 ] ∃ 𝑐 ∈ 𝑝 ( ( ( 𝑎 ∈ ( 𝑝 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑝 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑝 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑝 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑏 𝑖 𝑐 ) ) ) } ) ) |
| 46 |
0 45
|
wceq |
⊢ hpG = ( 𝑔 ∈ V ↦ ( 𝑑 ∈ ran ( LineG ‘ 𝑔 ) ↦ { 〈 𝑎 , 𝑏 〉 ∣ [ ( Base ‘ 𝑔 ) / 𝑝 ] [ ( Itv ‘ 𝑔 ) / 𝑖 ] ∃ 𝑐 ∈ 𝑝 ( ( ( 𝑎 ∈ ( 𝑝 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑝 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( 𝑏 ∈ ( 𝑝 ∖ 𝑑 ) ∧ 𝑐 ∈ ( 𝑝 ∖ 𝑑 ) ) ∧ ∃ 𝑡 ∈ 𝑑 𝑡 ∈ ( 𝑏 𝑖 𝑐 ) ) ) } ) ) |