Metamath Proof Explorer


Definition df-hvsub

Description: Define vector subtraction. See hvsubvali for its value and hvsubcli for its closure. (Contributed by NM, 6-Jun-2008) (New usage is discouraged.)

Ref Expression
Assertion df-hvsub = ( 𝑥 ∈ ℋ , 𝑦 ∈ ℋ ↦ ( 𝑥 + ( - 1 · 𝑦 ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmv
1 vx 𝑥
2 chba
3 vy 𝑦
4 1 cv 𝑥
5 cva +
6 c1 1
7 6 cneg - 1
8 csm ·
9 3 cv 𝑦
10 7 9 8 co ( - 1 · 𝑦 )
11 4 10 5 co ( 𝑥 + ( - 1 · 𝑦 ) )
12 1 3 2 2 11 cmpo ( 𝑥 ∈ ℋ , 𝑦 ∈ ℋ ↦ ( 𝑥 + ( - 1 · 𝑦 ) ) )
13 0 12 wceq = ( 𝑥 ∈ ℋ , 𝑦 ∈ ℋ ↦ ( 𝑥 + ( - 1 · 𝑦 ) ) )