Database
COMPLEX HILBERT SPACE EXPLORER (DEPRECATED)
Axiomatization of complex pre-Hilbert spaces
Preliminary ZFC lemmas
df-hvsub
Metamath Proof Explorer
Description: Define vector subtraction. See hvsubvali for its value and hvsubcli for its closure. (Contributed by NM , 6-Jun-2008)
(New usage is discouraged.)
Ref
Expression
Assertion
df-hvsub
⊢ −ℎ = ( 𝑥 ∈ ℋ , 𝑦 ∈ ℋ ↦ ( 𝑥 +ℎ ( - 1 · ℎ 𝑦 ) ) )
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cmv
⊢ −ℎ
1
vx
⊢ 𝑥
2
chba
⊢ ℋ
3
vy
⊢ 𝑦
4
1
cv
⊢ 𝑥
5
cva
⊢ +ℎ
6
c1
⊢ 1
7
6
cneg
⊢ - 1
8
csm
⊢ · ℎ
9
3
cv
⊢ 𝑦
10
7 9 8
co
⊢ ( - 1 · ℎ 𝑦 )
11
4 10 5
co
⊢ ( 𝑥 +ℎ ( - 1 · ℎ 𝑦 ) )
12
1 3 2 2 11
cmpo
⊢ ( 𝑥 ∈ ℋ , 𝑦 ∈ ℋ ↦ ( 𝑥 +ℎ ( - 1 · ℎ 𝑦 ) ) )
13
0 12
wceq
⊢ −ℎ = ( 𝑥 ∈ ℋ , 𝑦 ∈ ℋ ↦ ( 𝑥 +ℎ ( - 1 · ℎ 𝑦 ) ) )