Step |
Hyp |
Ref |
Expression |
0 |
|
cibl |
⊢ 𝐿1 |
1 |
|
vf |
⊢ 𝑓 |
2 |
|
cmbf |
⊢ MblFn |
3 |
|
vk |
⊢ 𝑘 |
4 |
|
cc0 |
⊢ 0 |
5 |
|
cfz |
⊢ ... |
6 |
|
c3 |
⊢ 3 |
7 |
4 6 5
|
co |
⊢ ( 0 ... 3 ) |
8 |
|
citg2 |
⊢ ∫2 |
9 |
|
vx |
⊢ 𝑥 |
10 |
|
cr |
⊢ ℝ |
11 |
|
cre |
⊢ ℜ |
12 |
1
|
cv |
⊢ 𝑓 |
13 |
9
|
cv |
⊢ 𝑥 |
14 |
13 12
|
cfv |
⊢ ( 𝑓 ‘ 𝑥 ) |
15 |
|
cdiv |
⊢ / |
16 |
|
ci |
⊢ i |
17 |
|
cexp |
⊢ ↑ |
18 |
3
|
cv |
⊢ 𝑘 |
19 |
16 18 17
|
co |
⊢ ( i ↑ 𝑘 ) |
20 |
14 19 15
|
co |
⊢ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) |
21 |
20 11
|
cfv |
⊢ ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) |
22 |
|
vy |
⊢ 𝑦 |
23 |
12
|
cdm |
⊢ dom 𝑓 |
24 |
13 23
|
wcel |
⊢ 𝑥 ∈ dom 𝑓 |
25 |
|
cle |
⊢ ≤ |
26 |
22
|
cv |
⊢ 𝑦 |
27 |
4 26 25
|
wbr |
⊢ 0 ≤ 𝑦 |
28 |
24 27
|
wa |
⊢ ( 𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦 ) |
29 |
28 26 4
|
cif |
⊢ if ( ( 𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) |
30 |
22 21 29
|
csb |
⊢ ⦋ ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) |
31 |
9 10 30
|
cmpt |
⊢ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) |
32 |
31 8
|
cfv |
⊢ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) |
33 |
32 10
|
wcel |
⊢ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) ∈ ℝ |
34 |
33 3 7
|
wral |
⊢ ∀ 𝑘 ∈ ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) ∈ ℝ |
35 |
34 1 2
|
crab |
⊢ { 𝑓 ∈ MblFn ∣ ∀ 𝑘 ∈ ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) ∈ ℝ } |
36 |
0 35
|
wceq |
⊢ 𝐿1 = { 𝑓 ∈ MblFn ∣ ∀ 𝑘 ∈ ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 ) / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) ∈ ℝ } |