Metamath Proof Explorer


Definition df-ibl

Description: Define the class of integrable functions on the reals. A function is integrable if it is measurable and the integrals of the pieces of the function are all finite. (Contributed by Mario Carneiro, 28-Jun-2014)

Ref Expression
Assertion df-ibl 𝐿1 = { 𝑓 ∈ MblFn ∣ ∀ 𝑘 ∈ ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ( ℜ ‘ ( ( 𝑓𝑥 ) / ( i ↑ 𝑘 ) ) ) / 𝑦 if ( ( 𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) ∈ ℝ }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cibl 𝐿1
1 vf 𝑓
2 cmbf MblFn
3 vk 𝑘
4 cc0 0
5 cfz ...
6 c3 3
7 4 6 5 co ( 0 ... 3 )
8 citg2 2
9 vx 𝑥
10 cr
11 cre
12 1 cv 𝑓
13 9 cv 𝑥
14 13 12 cfv ( 𝑓𝑥 )
15 cdiv /
16 ci i
17 cexp
18 3 cv 𝑘
19 16 18 17 co ( i ↑ 𝑘 )
20 14 19 15 co ( ( 𝑓𝑥 ) / ( i ↑ 𝑘 ) )
21 20 11 cfv ( ℜ ‘ ( ( 𝑓𝑥 ) / ( i ↑ 𝑘 ) ) )
22 vy 𝑦
23 12 cdm dom 𝑓
24 13 23 wcel 𝑥 ∈ dom 𝑓
25 cle
26 22 cv 𝑦
27 4 26 25 wbr 0 ≤ 𝑦
28 24 27 wa ( 𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦 )
29 28 26 4 cif if ( ( 𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 )
30 22 21 29 csb ( ℜ ‘ ( ( 𝑓𝑥 ) / ( i ↑ 𝑘 ) ) ) / 𝑦 if ( ( 𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 )
31 9 10 30 cmpt ( 𝑥 ∈ ℝ ↦ ( ℜ ‘ ( ( 𝑓𝑥 ) / ( i ↑ 𝑘 ) ) ) / 𝑦 if ( ( 𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) )
32 31 8 cfv ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ( ℜ ‘ ( ( 𝑓𝑥 ) / ( i ↑ 𝑘 ) ) ) / 𝑦 if ( ( 𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) )
33 32 10 wcel ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ( ℜ ‘ ( ( 𝑓𝑥 ) / ( i ↑ 𝑘 ) ) ) / 𝑦 if ( ( 𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) ∈ ℝ
34 33 3 7 wral 𝑘 ∈ ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ( ℜ ‘ ( ( 𝑓𝑥 ) / ( i ↑ 𝑘 ) ) ) / 𝑦 if ( ( 𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) ∈ ℝ
35 34 1 2 crab { 𝑓 ∈ MblFn ∣ ∀ 𝑘 ∈ ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ( ℜ ‘ ( ( 𝑓𝑥 ) / ( i ↑ 𝑘 ) ) ) / 𝑦 if ( ( 𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) ∈ ℝ }
36 0 35 wceq 𝐿1 = { 𝑓 ∈ MblFn ∣ ∀ 𝑘 ∈ ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ( ℜ ‘ ( ( 𝑓𝑥 ) / ( i ↑ 𝑘 ) ) ) / 𝑦 if ( ( 𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) ∈ ℝ }