| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cibl | ⊢ 𝐿1 | 
						
							| 1 |  | vf | ⊢ 𝑓 | 
						
							| 2 |  | cmbf | ⊢ MblFn | 
						
							| 3 |  | vk | ⊢ 𝑘 | 
						
							| 4 |  | cc0 | ⊢ 0 | 
						
							| 5 |  | cfz | ⊢ ... | 
						
							| 6 |  | c3 | ⊢ 3 | 
						
							| 7 | 4 6 5 | co | ⊢ ( 0 ... 3 ) | 
						
							| 8 |  | citg2 | ⊢ ∫2 | 
						
							| 9 |  | vx | ⊢ 𝑥 | 
						
							| 10 |  | cr | ⊢ ℝ | 
						
							| 11 |  | cre | ⊢ ℜ | 
						
							| 12 | 1 | cv | ⊢ 𝑓 | 
						
							| 13 | 9 | cv | ⊢ 𝑥 | 
						
							| 14 | 13 12 | cfv | ⊢ ( 𝑓 ‘ 𝑥 ) | 
						
							| 15 |  | cdiv | ⊢  / | 
						
							| 16 |  | ci | ⊢ i | 
						
							| 17 |  | cexp | ⊢ ↑ | 
						
							| 18 | 3 | cv | ⊢ 𝑘 | 
						
							| 19 | 16 18 17 | co | ⊢ ( i ↑ 𝑘 ) | 
						
							| 20 | 14 19 15 | co | ⊢ ( ( 𝑓 ‘ 𝑥 )  /  ( i ↑ 𝑘 ) ) | 
						
							| 21 | 20 11 | cfv | ⊢ ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 )  /  ( i ↑ 𝑘 ) ) ) | 
						
							| 22 |  | vy | ⊢ 𝑦 | 
						
							| 23 | 12 | cdm | ⊢ dom  𝑓 | 
						
							| 24 | 13 23 | wcel | ⊢ 𝑥  ∈  dom  𝑓 | 
						
							| 25 |  | cle | ⊢  ≤ | 
						
							| 26 | 22 | cv | ⊢ 𝑦 | 
						
							| 27 | 4 26 25 | wbr | ⊢ 0  ≤  𝑦 | 
						
							| 28 | 24 27 | wa | ⊢ ( 𝑥  ∈  dom  𝑓  ∧  0  ≤  𝑦 ) | 
						
							| 29 | 28 26 4 | cif | ⊢ if ( ( 𝑥  ∈  dom  𝑓  ∧  0  ≤  𝑦 ) ,  𝑦 ,  0 ) | 
						
							| 30 | 22 21 29 | csb | ⊢ ⦋ ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 )  /  ( i ↑ 𝑘 ) ) )  /  𝑦 ⦌ if ( ( 𝑥  ∈  dom  𝑓  ∧  0  ≤  𝑦 ) ,  𝑦 ,  0 ) | 
						
							| 31 | 9 10 30 | cmpt | ⊢ ( 𝑥  ∈  ℝ  ↦  ⦋ ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 )  /  ( i ↑ 𝑘 ) ) )  /  𝑦 ⦌ if ( ( 𝑥  ∈  dom  𝑓  ∧  0  ≤  𝑦 ) ,  𝑦 ,  0 ) ) | 
						
							| 32 | 31 8 | cfv | ⊢ ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  ⦋ ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 )  /  ( i ↑ 𝑘 ) ) )  /  𝑦 ⦌ if ( ( 𝑥  ∈  dom  𝑓  ∧  0  ≤  𝑦 ) ,  𝑦 ,  0 ) ) ) | 
						
							| 33 | 32 10 | wcel | ⊢ ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  ⦋ ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 )  /  ( i ↑ 𝑘 ) ) )  /  𝑦 ⦌ if ( ( 𝑥  ∈  dom  𝑓  ∧  0  ≤  𝑦 ) ,  𝑦 ,  0 ) ) )  ∈  ℝ | 
						
							| 34 | 33 3 7 | wral | ⊢ ∀ 𝑘  ∈  ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  ⦋ ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 )  /  ( i ↑ 𝑘 ) ) )  /  𝑦 ⦌ if ( ( 𝑥  ∈  dom  𝑓  ∧  0  ≤  𝑦 ) ,  𝑦 ,  0 ) ) )  ∈  ℝ | 
						
							| 35 | 34 1 2 | crab | ⊢ { 𝑓  ∈  MblFn  ∣  ∀ 𝑘  ∈  ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  ⦋ ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 )  /  ( i ↑ 𝑘 ) ) )  /  𝑦 ⦌ if ( ( 𝑥  ∈  dom  𝑓  ∧  0  ≤  𝑦 ) ,  𝑦 ,  0 ) ) )  ∈  ℝ } | 
						
							| 36 | 0 35 | wceq | ⊢ 𝐿1  =  { 𝑓  ∈  MblFn  ∣  ∀ 𝑘  ∈  ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  ⦋ ( ℜ ‘ ( ( 𝑓 ‘ 𝑥 )  /  ( i ↑ 𝑘 ) ) )  /  𝑦 ⦌ if ( ( 𝑥  ∈  dom  𝑓  ∧  0  ≤  𝑦 ) ,  𝑦 ,  0 ) ) )  ∈  ℝ } |