Step |
Hyp |
Ref |
Expression |
0 |
|
ciccp |
⊢ RePart |
1 |
|
vm |
⊢ 𝑚 |
2 |
|
cn |
⊢ ℕ |
3 |
|
vp |
⊢ 𝑝 |
4 |
|
cxr |
⊢ ℝ* |
5 |
|
cmap |
⊢ ↑m |
6 |
|
cc0 |
⊢ 0 |
7 |
|
cfz |
⊢ ... |
8 |
1
|
cv |
⊢ 𝑚 |
9 |
6 8 7
|
co |
⊢ ( 0 ... 𝑚 ) |
10 |
4 9 5
|
co |
⊢ ( ℝ* ↑m ( 0 ... 𝑚 ) ) |
11 |
|
vi |
⊢ 𝑖 |
12 |
|
cfzo |
⊢ ..^ |
13 |
6 8 12
|
co |
⊢ ( 0 ..^ 𝑚 ) |
14 |
3
|
cv |
⊢ 𝑝 |
15 |
11
|
cv |
⊢ 𝑖 |
16 |
15 14
|
cfv |
⊢ ( 𝑝 ‘ 𝑖 ) |
17 |
|
clt |
⊢ < |
18 |
|
caddc |
⊢ + |
19 |
|
c1 |
⊢ 1 |
20 |
15 19 18
|
co |
⊢ ( 𝑖 + 1 ) |
21 |
20 14
|
cfv |
⊢ ( 𝑝 ‘ ( 𝑖 + 1 ) ) |
22 |
16 21 17
|
wbr |
⊢ ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) |
23 |
22 11 13
|
wral |
⊢ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) |
24 |
23 3 10
|
crab |
⊢ { 𝑝 ∈ ( ℝ* ↑m ( 0 ... 𝑚 ) ) ∣ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) } |
25 |
1 2 24
|
cmpt |
⊢ ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ* ↑m ( 0 ... 𝑚 ) ) ∣ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) } ) |
26 |
0 25
|
wceq |
⊢ RePart = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ* ↑m ( 0 ... 𝑚 ) ) ∣ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) } ) |