Metamath Proof Explorer


Definition df-ico

Description: Define the set of closed-below, open-above intervals of extended reals. (Contributed by NM, 24-Dec-2006)

Ref Expression
Assertion df-ico [,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥𝑧𝑧 < 𝑦 ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cico [,)
1 vx 𝑥
2 cxr *
3 vy 𝑦
4 vz 𝑧
5 1 cv 𝑥
6 cle
7 4 cv 𝑧
8 5 7 6 wbr 𝑥𝑧
9 clt <
10 3 cv 𝑦
11 7 10 9 wbr 𝑧 < 𝑦
12 8 11 wa ( 𝑥𝑧𝑧 < 𝑦 )
13 12 4 2 crab { 𝑧 ∈ ℝ* ∣ ( 𝑥𝑧𝑧 < 𝑦 ) }
14 1 3 2 2 13 cmpo ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥𝑧𝑧 < 𝑦 ) } )
15 0 14 wceq [,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥𝑧𝑧 < 𝑦 ) } )