| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cidfu |
⊢ idfunc |
| 1 |
|
vt |
⊢ 𝑡 |
| 2 |
|
ccat |
⊢ Cat |
| 3 |
|
cbs |
⊢ Base |
| 4 |
1
|
cv |
⊢ 𝑡 |
| 5 |
4 3
|
cfv |
⊢ ( Base ‘ 𝑡 ) |
| 6 |
|
vb |
⊢ 𝑏 |
| 7 |
|
cid |
⊢ I |
| 8 |
6
|
cv |
⊢ 𝑏 |
| 9 |
7 8
|
cres |
⊢ ( I ↾ 𝑏 ) |
| 10 |
|
vz |
⊢ 𝑧 |
| 11 |
8 8
|
cxp |
⊢ ( 𝑏 × 𝑏 ) |
| 12 |
|
chom |
⊢ Hom |
| 13 |
4 12
|
cfv |
⊢ ( Hom ‘ 𝑡 ) |
| 14 |
10
|
cv |
⊢ 𝑧 |
| 15 |
14 13
|
cfv |
⊢ ( ( Hom ‘ 𝑡 ) ‘ 𝑧 ) |
| 16 |
7 15
|
cres |
⊢ ( I ↾ ( ( Hom ‘ 𝑡 ) ‘ 𝑧 ) ) |
| 17 |
10 11 16
|
cmpt |
⊢ ( 𝑧 ∈ ( 𝑏 × 𝑏 ) ↦ ( I ↾ ( ( Hom ‘ 𝑡 ) ‘ 𝑧 ) ) ) |
| 18 |
9 17
|
cop |
⊢ 〈 ( I ↾ 𝑏 ) , ( 𝑧 ∈ ( 𝑏 × 𝑏 ) ↦ ( I ↾ ( ( Hom ‘ 𝑡 ) ‘ 𝑧 ) ) ) 〉 |
| 19 |
6 5 18
|
csb |
⊢ ⦋ ( Base ‘ 𝑡 ) / 𝑏 ⦌ 〈 ( I ↾ 𝑏 ) , ( 𝑧 ∈ ( 𝑏 × 𝑏 ) ↦ ( I ↾ ( ( Hom ‘ 𝑡 ) ‘ 𝑧 ) ) ) 〉 |
| 20 |
1 2 19
|
cmpt |
⊢ ( 𝑡 ∈ Cat ↦ ⦋ ( Base ‘ 𝑡 ) / 𝑏 ⦌ 〈 ( I ↾ 𝑏 ) , ( 𝑧 ∈ ( 𝑏 × 𝑏 ) ↦ ( I ↾ ( ( Hom ‘ 𝑡 ) ‘ 𝑧 ) ) ) 〉 ) |
| 21 |
0 20
|
wceq |
⊢ idfunc = ( 𝑡 ∈ Cat ↦ ⦋ ( Base ‘ 𝑡 ) / 𝑏 ⦌ 〈 ( I ↾ 𝑏 ) , ( 𝑧 ∈ ( 𝑏 × 𝑏 ) ↦ ( I ↾ ( ( Hom ‘ 𝑡 ) ‘ 𝑧 ) ) ) 〉 ) |