Metamath Proof Explorer


Definition df-ig1p

Description: Define a choice function for generators of ideals over a division ring; this is the unique monic polynomial of minimal degree in the ideal. (Contributed by Stefan O'Rear, 29-Mar-2015) (Revised by AV, 25-Sep-2020)

Ref Expression
Assertion df-ig1p idlGen1p = ( 𝑟 ∈ V ↦ ( 𝑖 ∈ ( LIdeal ‘ ( Poly1𝑟 ) ) ↦ if ( 𝑖 = { ( 0g ‘ ( Poly1𝑟 ) ) } , ( 0g ‘ ( Poly1𝑟 ) ) , ( 𝑔 ∈ ( 𝑖 ∩ ( Monic1p𝑟 ) ) ( ( deg1𝑟 ) ‘ 𝑔 ) = inf ( ( ( deg1𝑟 ) “ ( 𝑖 ∖ { ( 0g ‘ ( Poly1𝑟 ) ) } ) ) , ℝ , < ) ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cig1p idlGen1p
1 vr 𝑟
2 cvv V
3 vi 𝑖
4 clidl LIdeal
5 cpl1 Poly1
6 1 cv 𝑟
7 6 5 cfv ( Poly1𝑟 )
8 7 4 cfv ( LIdeal ‘ ( Poly1𝑟 ) )
9 3 cv 𝑖
10 c0g 0g
11 7 10 cfv ( 0g ‘ ( Poly1𝑟 ) )
12 11 csn { ( 0g ‘ ( Poly1𝑟 ) ) }
13 9 12 wceq 𝑖 = { ( 0g ‘ ( Poly1𝑟 ) ) }
14 vg 𝑔
15 cmn1 Monic1p
16 6 15 cfv ( Monic1p𝑟 )
17 9 16 cin ( 𝑖 ∩ ( Monic1p𝑟 ) )
18 cdg1 deg1
19 6 18 cfv ( deg1𝑟 )
20 14 cv 𝑔
21 20 19 cfv ( ( deg1𝑟 ) ‘ 𝑔 )
22 9 12 cdif ( 𝑖 ∖ { ( 0g ‘ ( Poly1𝑟 ) ) } )
23 19 22 cima ( ( deg1𝑟 ) “ ( 𝑖 ∖ { ( 0g ‘ ( Poly1𝑟 ) ) } ) )
24 cr
25 clt <
26 23 24 25 cinf inf ( ( ( deg1𝑟 ) “ ( 𝑖 ∖ { ( 0g ‘ ( Poly1𝑟 ) ) } ) ) , ℝ , < )
27 21 26 wceq ( ( deg1𝑟 ) ‘ 𝑔 ) = inf ( ( ( deg1𝑟 ) “ ( 𝑖 ∖ { ( 0g ‘ ( Poly1𝑟 ) ) } ) ) , ℝ , < )
28 27 14 17 crio ( 𝑔 ∈ ( 𝑖 ∩ ( Monic1p𝑟 ) ) ( ( deg1𝑟 ) ‘ 𝑔 ) = inf ( ( ( deg1𝑟 ) “ ( 𝑖 ∖ { ( 0g ‘ ( Poly1𝑟 ) ) } ) ) , ℝ , < ) )
29 13 11 28 cif if ( 𝑖 = { ( 0g ‘ ( Poly1𝑟 ) ) } , ( 0g ‘ ( Poly1𝑟 ) ) , ( 𝑔 ∈ ( 𝑖 ∩ ( Monic1p𝑟 ) ) ( ( deg1𝑟 ) ‘ 𝑔 ) = inf ( ( ( deg1𝑟 ) “ ( 𝑖 ∖ { ( 0g ‘ ( Poly1𝑟 ) ) } ) ) , ℝ , < ) ) )
30 3 8 29 cmpt ( 𝑖 ∈ ( LIdeal ‘ ( Poly1𝑟 ) ) ↦ if ( 𝑖 = { ( 0g ‘ ( Poly1𝑟 ) ) } , ( 0g ‘ ( Poly1𝑟 ) ) , ( 𝑔 ∈ ( 𝑖 ∩ ( Monic1p𝑟 ) ) ( ( deg1𝑟 ) ‘ 𝑔 ) = inf ( ( ( deg1𝑟 ) “ ( 𝑖 ∖ { ( 0g ‘ ( Poly1𝑟 ) ) } ) ) , ℝ , < ) ) ) )
31 1 2 30 cmpt ( 𝑟 ∈ V ↦ ( 𝑖 ∈ ( LIdeal ‘ ( Poly1𝑟 ) ) ↦ if ( 𝑖 = { ( 0g ‘ ( Poly1𝑟 ) ) } , ( 0g ‘ ( Poly1𝑟 ) ) , ( 𝑔 ∈ ( 𝑖 ∩ ( Monic1p𝑟 ) ) ( ( deg1𝑟 ) ‘ 𝑔 ) = inf ( ( ( deg1𝑟 ) “ ( 𝑖 ∖ { ( 0g ‘ ( Poly1𝑟 ) ) } ) ) , ℝ , < ) ) ) ) )
32 0 31 wceq idlGen1p = ( 𝑟 ∈ V ↦ ( 𝑖 ∈ ( LIdeal ‘ ( Poly1𝑟 ) ) ↦ if ( 𝑖 = { ( 0g ‘ ( Poly1𝑟 ) ) } , ( 0g ‘ ( Poly1𝑟 ) ) , ( 𝑔 ∈ ( 𝑖 ∩ ( Monic1p𝑟 ) ) ( ( deg1𝑟 ) ‘ 𝑔 ) = inf ( ( ( deg1𝑟 ) “ ( 𝑖 ∖ { ( 0g ‘ ( Poly1𝑟 ) ) } ) ) , ℝ , < ) ) ) ) )