Step |
Hyp |
Ref |
Expression |
0 |
|
cig1p |
⊢ idlGen1p |
1 |
|
vr |
⊢ 𝑟 |
2 |
|
cvv |
⊢ V |
3 |
|
vi |
⊢ 𝑖 |
4 |
|
clidl |
⊢ LIdeal |
5 |
|
cpl1 |
⊢ Poly1 |
6 |
1
|
cv |
⊢ 𝑟 |
7 |
6 5
|
cfv |
⊢ ( Poly1 ‘ 𝑟 ) |
8 |
7 4
|
cfv |
⊢ ( LIdeal ‘ ( Poly1 ‘ 𝑟 ) ) |
9 |
3
|
cv |
⊢ 𝑖 |
10 |
|
c0g |
⊢ 0g |
11 |
7 10
|
cfv |
⊢ ( 0g ‘ ( Poly1 ‘ 𝑟 ) ) |
12 |
11
|
csn |
⊢ { ( 0g ‘ ( Poly1 ‘ 𝑟 ) ) } |
13 |
9 12
|
wceq |
⊢ 𝑖 = { ( 0g ‘ ( Poly1 ‘ 𝑟 ) ) } |
14 |
|
vg |
⊢ 𝑔 |
15 |
|
cmn1 |
⊢ Monic1p |
16 |
6 15
|
cfv |
⊢ ( Monic1p ‘ 𝑟 ) |
17 |
9 16
|
cin |
⊢ ( 𝑖 ∩ ( Monic1p ‘ 𝑟 ) ) |
18 |
|
cdg1 |
⊢ deg1 |
19 |
6 18
|
cfv |
⊢ ( deg1 ‘ 𝑟 ) |
20 |
14
|
cv |
⊢ 𝑔 |
21 |
20 19
|
cfv |
⊢ ( ( deg1 ‘ 𝑟 ) ‘ 𝑔 ) |
22 |
9 12
|
cdif |
⊢ ( 𝑖 ∖ { ( 0g ‘ ( Poly1 ‘ 𝑟 ) ) } ) |
23 |
19 22
|
cima |
⊢ ( ( deg1 ‘ 𝑟 ) “ ( 𝑖 ∖ { ( 0g ‘ ( Poly1 ‘ 𝑟 ) ) } ) ) |
24 |
|
cr |
⊢ ℝ |
25 |
|
clt |
⊢ < |
26 |
23 24 25
|
cinf |
⊢ inf ( ( ( deg1 ‘ 𝑟 ) “ ( 𝑖 ∖ { ( 0g ‘ ( Poly1 ‘ 𝑟 ) ) } ) ) , ℝ , < ) |
27 |
21 26
|
wceq |
⊢ ( ( deg1 ‘ 𝑟 ) ‘ 𝑔 ) = inf ( ( ( deg1 ‘ 𝑟 ) “ ( 𝑖 ∖ { ( 0g ‘ ( Poly1 ‘ 𝑟 ) ) } ) ) , ℝ , < ) |
28 |
27 14 17
|
crio |
⊢ ( ℩ 𝑔 ∈ ( 𝑖 ∩ ( Monic1p ‘ 𝑟 ) ) ( ( deg1 ‘ 𝑟 ) ‘ 𝑔 ) = inf ( ( ( deg1 ‘ 𝑟 ) “ ( 𝑖 ∖ { ( 0g ‘ ( Poly1 ‘ 𝑟 ) ) } ) ) , ℝ , < ) ) |
29 |
13 11 28
|
cif |
⊢ if ( 𝑖 = { ( 0g ‘ ( Poly1 ‘ 𝑟 ) ) } , ( 0g ‘ ( Poly1 ‘ 𝑟 ) ) , ( ℩ 𝑔 ∈ ( 𝑖 ∩ ( Monic1p ‘ 𝑟 ) ) ( ( deg1 ‘ 𝑟 ) ‘ 𝑔 ) = inf ( ( ( deg1 ‘ 𝑟 ) “ ( 𝑖 ∖ { ( 0g ‘ ( Poly1 ‘ 𝑟 ) ) } ) ) , ℝ , < ) ) ) |
30 |
3 8 29
|
cmpt |
⊢ ( 𝑖 ∈ ( LIdeal ‘ ( Poly1 ‘ 𝑟 ) ) ↦ if ( 𝑖 = { ( 0g ‘ ( Poly1 ‘ 𝑟 ) ) } , ( 0g ‘ ( Poly1 ‘ 𝑟 ) ) , ( ℩ 𝑔 ∈ ( 𝑖 ∩ ( Monic1p ‘ 𝑟 ) ) ( ( deg1 ‘ 𝑟 ) ‘ 𝑔 ) = inf ( ( ( deg1 ‘ 𝑟 ) “ ( 𝑖 ∖ { ( 0g ‘ ( Poly1 ‘ 𝑟 ) ) } ) ) , ℝ , < ) ) ) ) |
31 |
1 2 30
|
cmpt |
⊢ ( 𝑟 ∈ V ↦ ( 𝑖 ∈ ( LIdeal ‘ ( Poly1 ‘ 𝑟 ) ) ↦ if ( 𝑖 = { ( 0g ‘ ( Poly1 ‘ 𝑟 ) ) } , ( 0g ‘ ( Poly1 ‘ 𝑟 ) ) , ( ℩ 𝑔 ∈ ( 𝑖 ∩ ( Monic1p ‘ 𝑟 ) ) ( ( deg1 ‘ 𝑟 ) ‘ 𝑔 ) = inf ( ( ( deg1 ‘ 𝑟 ) “ ( 𝑖 ∖ { ( 0g ‘ ( Poly1 ‘ 𝑟 ) ) } ) ) , ℝ , < ) ) ) ) ) |
32 |
0 31
|
wceq |
⊢ idlGen1p = ( 𝑟 ∈ V ↦ ( 𝑖 ∈ ( LIdeal ‘ ( Poly1 ‘ 𝑟 ) ) ↦ if ( 𝑖 = { ( 0g ‘ ( Poly1 ‘ 𝑟 ) ) } , ( 0g ‘ ( Poly1 ‘ 𝑟 ) ) , ( ℩ 𝑔 ∈ ( 𝑖 ∩ ( Monic1p ‘ 𝑟 ) ) ( ( deg1 ‘ 𝑟 ) ‘ 𝑔 ) = inf ( ( ( deg1 ‘ 𝑟 ) “ ( 𝑖 ∖ { ( 0g ‘ ( Poly1 ‘ 𝑟 ) ) } ) ) , ℝ , < ) ) ) ) ) |