Metamath Proof Explorer


Definition df-ii

Description: Define the unit interval with the Euclidean topology. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 3-Sep-2015)

Ref Expression
Assertion df-ii II = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cii II
1 cmopn MetOpen
2 cabs abs
3 cmin
4 2 3 ccom ( abs ∘ − )
5 cc0 0
6 cicc [,]
7 c1 1
8 5 7 6 co ( 0 [,] 1 )
9 8 8 cxp ( ( 0 [,] 1 ) × ( 0 [,] 1 ) )
10 4 9 cres ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) )
11 10 1 cfv ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) )
12 0 11 wceq II = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) )