Metamath Proof Explorer


Definition df-imas

Description: Define an image structure, which takes a structure and a function on the base set, and maps all the operations via the function. For this to work properly f must either be injective or satisfy the well-definedness condition f ( a ) = f ( c ) /\ f ( b ) = f ( d ) -> f ( a + b ) = f ( c + d ) for each relevant operation.

Note that although we call this an "image" by association to df-ima , in order to keep the definition simple we consider only the case when the domain of F is equal to the base set of R . Other cases can be achieved by restricting F (with df-res ) and/or R ( with df-ress ) to their common domain. (Contributed by Mario Carneiro, 23-Feb-2015) (Revised by AV, 6-Oct-2020)

Ref Expression
Assertion df-imas s = ( 𝑓 ∈ V , 𝑟 ∈ V ↦ ( Base ‘ 𝑟 ) / 𝑣 ( ( { ⟨ ( Base ‘ ndx ) , ran 𝑓 ⟩ , ⟨ ( +g ‘ ndx ) , 𝑝𝑣 𝑞𝑣 { ⟨ ⟨ ( 𝑓𝑝 ) , ( 𝑓𝑞 ) ⟩ , ( 𝑓 ‘ ( 𝑝 ( +g𝑟 ) 𝑞 ) ) ⟩ } ⟩ , ⟨ ( .r ‘ ndx ) , 𝑝𝑣 𝑞𝑣 { ⟨ ⟨ ( 𝑓𝑝 ) , ( 𝑓𝑞 ) ⟩ , ( 𝑓 ‘ ( 𝑝 ( .r𝑟 ) 𝑞 ) ) ⟩ } ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑟 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , 𝑞𝑣 ( 𝑝 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑥 ∈ { ( 𝑓𝑞 ) } ↦ ( 𝑓 ‘ ( 𝑝 ( ·𝑠𝑟 ) 𝑞 ) ) ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , 𝑝𝑣 𝑞𝑣 { ⟨ ⟨ ( 𝑓𝑝 ) , ( 𝑓𝑞 ) ⟩ , ( 𝑝 ( ·𝑖𝑟 ) 𝑞 ) ⟩ } ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopOpen ‘ 𝑟 ) qTop 𝑓 ) ⟩ , ⟨ ( le ‘ ndx ) , ( ( 𝑓 ∘ ( le ‘ 𝑟 ) ) ∘ 𝑓 ) ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑥 ∈ ran 𝑓 , 𝑦 ∈ ran 𝑓 ↦ inf ( 𝑛 ∈ ℕ ran ( 𝑔 ∈ { ∈ ( ( 𝑣 × 𝑣 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝑓 ‘ ( 1st ‘ ( ‘ 1 ) ) ) = 𝑥 ∧ ( 𝑓 ‘ ( 2nd ‘ ( 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑓 ‘ ( 2nd ‘ ( 𝑖 ) ) ) = ( 𝑓 ‘ ( 1st ‘ ( ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( ( dist ‘ 𝑟 ) ∘ 𝑔 ) ) ) , ℝ* , < ) ) ⟩ } ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cimas s
1 vf 𝑓
2 cvv V
3 vr 𝑟
4 cbs Base
5 3 cv 𝑟
6 5 4 cfv ( Base ‘ 𝑟 )
7 vv 𝑣
8 cnx ndx
9 8 4 cfv ( Base ‘ ndx )
10 1 cv 𝑓
11 10 crn ran 𝑓
12 9 11 cop ⟨ ( Base ‘ ndx ) , ran 𝑓
13 cplusg +g
14 8 13 cfv ( +g ‘ ndx )
15 vp 𝑝
16 7 cv 𝑣
17 vq 𝑞
18 15 cv 𝑝
19 18 10 cfv ( 𝑓𝑝 )
20 17 cv 𝑞
21 20 10 cfv ( 𝑓𝑞 )
22 19 21 cop ⟨ ( 𝑓𝑝 ) , ( 𝑓𝑞 ) ⟩
23 5 13 cfv ( +g𝑟 )
24 18 20 23 co ( 𝑝 ( +g𝑟 ) 𝑞 )
25 24 10 cfv ( 𝑓 ‘ ( 𝑝 ( +g𝑟 ) 𝑞 ) )
26 22 25 cop ⟨ ⟨ ( 𝑓𝑝 ) , ( 𝑓𝑞 ) ⟩ , ( 𝑓 ‘ ( 𝑝 ( +g𝑟 ) 𝑞 ) ) ⟩
27 26 csn { ⟨ ⟨ ( 𝑓𝑝 ) , ( 𝑓𝑞 ) ⟩ , ( 𝑓 ‘ ( 𝑝 ( +g𝑟 ) 𝑞 ) ) ⟩ }
28 17 16 27 ciun 𝑞𝑣 { ⟨ ⟨ ( 𝑓𝑝 ) , ( 𝑓𝑞 ) ⟩ , ( 𝑓 ‘ ( 𝑝 ( +g𝑟 ) 𝑞 ) ) ⟩ }
29 15 16 28 ciun 𝑝𝑣 𝑞𝑣 { ⟨ ⟨ ( 𝑓𝑝 ) , ( 𝑓𝑞 ) ⟩ , ( 𝑓 ‘ ( 𝑝 ( +g𝑟 ) 𝑞 ) ) ⟩ }
30 14 29 cop ⟨ ( +g ‘ ndx ) , 𝑝𝑣 𝑞𝑣 { ⟨ ⟨ ( 𝑓𝑝 ) , ( 𝑓𝑞 ) ⟩ , ( 𝑓 ‘ ( 𝑝 ( +g𝑟 ) 𝑞 ) ) ⟩ } ⟩
31 cmulr .r
32 8 31 cfv ( .r ‘ ndx )
33 5 31 cfv ( .r𝑟 )
34 18 20 33 co ( 𝑝 ( .r𝑟 ) 𝑞 )
35 34 10 cfv ( 𝑓 ‘ ( 𝑝 ( .r𝑟 ) 𝑞 ) )
36 22 35 cop ⟨ ⟨ ( 𝑓𝑝 ) , ( 𝑓𝑞 ) ⟩ , ( 𝑓 ‘ ( 𝑝 ( .r𝑟 ) 𝑞 ) ) ⟩
37 36 csn { ⟨ ⟨ ( 𝑓𝑝 ) , ( 𝑓𝑞 ) ⟩ , ( 𝑓 ‘ ( 𝑝 ( .r𝑟 ) 𝑞 ) ) ⟩ }
38 17 16 37 ciun 𝑞𝑣 { ⟨ ⟨ ( 𝑓𝑝 ) , ( 𝑓𝑞 ) ⟩ , ( 𝑓 ‘ ( 𝑝 ( .r𝑟 ) 𝑞 ) ) ⟩ }
39 15 16 38 ciun 𝑝𝑣 𝑞𝑣 { ⟨ ⟨ ( 𝑓𝑝 ) , ( 𝑓𝑞 ) ⟩ , ( 𝑓 ‘ ( 𝑝 ( .r𝑟 ) 𝑞 ) ) ⟩ }
40 32 39 cop ⟨ ( .r ‘ ndx ) , 𝑝𝑣 𝑞𝑣 { ⟨ ⟨ ( 𝑓𝑝 ) , ( 𝑓𝑞 ) ⟩ , ( 𝑓 ‘ ( 𝑝 ( .r𝑟 ) 𝑞 ) ) ⟩ } ⟩
41 12 30 40 ctp { ⟨ ( Base ‘ ndx ) , ran 𝑓 ⟩ , ⟨ ( +g ‘ ndx ) , 𝑝𝑣 𝑞𝑣 { ⟨ ⟨ ( 𝑓𝑝 ) , ( 𝑓𝑞 ) ⟩ , ( 𝑓 ‘ ( 𝑝 ( +g𝑟 ) 𝑞 ) ) ⟩ } ⟩ , ⟨ ( .r ‘ ndx ) , 𝑝𝑣 𝑞𝑣 { ⟨ ⟨ ( 𝑓𝑝 ) , ( 𝑓𝑞 ) ⟩ , ( 𝑓 ‘ ( 𝑝 ( .r𝑟 ) 𝑞 ) ) ⟩ } ⟩ }
42 csca Scalar
43 8 42 cfv ( Scalar ‘ ndx )
44 5 42 cfv ( Scalar ‘ 𝑟 )
45 43 44 cop ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑟 ) ⟩
46 cvsca ·𝑠
47 8 46 cfv ( ·𝑠 ‘ ndx )
48 44 4 cfv ( Base ‘ ( Scalar ‘ 𝑟 ) )
49 vx 𝑥
50 21 csn { ( 𝑓𝑞 ) }
51 5 46 cfv ( ·𝑠𝑟 )
52 18 20 51 co ( 𝑝 ( ·𝑠𝑟 ) 𝑞 )
53 52 10 cfv ( 𝑓 ‘ ( 𝑝 ( ·𝑠𝑟 ) 𝑞 ) )
54 15 49 48 50 53 cmpo ( 𝑝 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑥 ∈ { ( 𝑓𝑞 ) } ↦ ( 𝑓 ‘ ( 𝑝 ( ·𝑠𝑟 ) 𝑞 ) ) )
55 17 16 54 ciun 𝑞𝑣 ( 𝑝 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑥 ∈ { ( 𝑓𝑞 ) } ↦ ( 𝑓 ‘ ( 𝑝 ( ·𝑠𝑟 ) 𝑞 ) ) )
56 47 55 cop ⟨ ( ·𝑠 ‘ ndx ) , 𝑞𝑣 ( 𝑝 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑥 ∈ { ( 𝑓𝑞 ) } ↦ ( 𝑓 ‘ ( 𝑝 ( ·𝑠𝑟 ) 𝑞 ) ) ) ⟩
57 cip ·𝑖
58 8 57 cfv ( ·𝑖 ‘ ndx )
59 5 57 cfv ( ·𝑖𝑟 )
60 18 20 59 co ( 𝑝 ( ·𝑖𝑟 ) 𝑞 )
61 22 60 cop ⟨ ⟨ ( 𝑓𝑝 ) , ( 𝑓𝑞 ) ⟩ , ( 𝑝 ( ·𝑖𝑟 ) 𝑞 ) ⟩
62 61 csn { ⟨ ⟨ ( 𝑓𝑝 ) , ( 𝑓𝑞 ) ⟩ , ( 𝑝 ( ·𝑖𝑟 ) 𝑞 ) ⟩ }
63 17 16 62 ciun 𝑞𝑣 { ⟨ ⟨ ( 𝑓𝑝 ) , ( 𝑓𝑞 ) ⟩ , ( 𝑝 ( ·𝑖𝑟 ) 𝑞 ) ⟩ }
64 15 16 63 ciun 𝑝𝑣 𝑞𝑣 { ⟨ ⟨ ( 𝑓𝑝 ) , ( 𝑓𝑞 ) ⟩ , ( 𝑝 ( ·𝑖𝑟 ) 𝑞 ) ⟩ }
65 58 64 cop ⟨ ( ·𝑖 ‘ ndx ) , 𝑝𝑣 𝑞𝑣 { ⟨ ⟨ ( 𝑓𝑝 ) , ( 𝑓𝑞 ) ⟩ , ( 𝑝 ( ·𝑖𝑟 ) 𝑞 ) ⟩ } ⟩
66 45 56 65 ctp { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑟 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , 𝑞𝑣 ( 𝑝 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑥 ∈ { ( 𝑓𝑞 ) } ↦ ( 𝑓 ‘ ( 𝑝 ( ·𝑠𝑟 ) 𝑞 ) ) ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , 𝑝𝑣 𝑞𝑣 { ⟨ ⟨ ( 𝑓𝑝 ) , ( 𝑓𝑞 ) ⟩ , ( 𝑝 ( ·𝑖𝑟 ) 𝑞 ) ⟩ } ⟩ }
67 41 66 cun ( { ⟨ ( Base ‘ ndx ) , ran 𝑓 ⟩ , ⟨ ( +g ‘ ndx ) , 𝑝𝑣 𝑞𝑣 { ⟨ ⟨ ( 𝑓𝑝 ) , ( 𝑓𝑞 ) ⟩ , ( 𝑓 ‘ ( 𝑝 ( +g𝑟 ) 𝑞 ) ) ⟩ } ⟩ , ⟨ ( .r ‘ ndx ) , 𝑝𝑣 𝑞𝑣 { ⟨ ⟨ ( 𝑓𝑝 ) , ( 𝑓𝑞 ) ⟩ , ( 𝑓 ‘ ( 𝑝 ( .r𝑟 ) 𝑞 ) ) ⟩ } ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑟 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , 𝑞𝑣 ( 𝑝 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑥 ∈ { ( 𝑓𝑞 ) } ↦ ( 𝑓 ‘ ( 𝑝 ( ·𝑠𝑟 ) 𝑞 ) ) ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , 𝑝𝑣 𝑞𝑣 { ⟨ ⟨ ( 𝑓𝑝 ) , ( 𝑓𝑞 ) ⟩ , ( 𝑝 ( ·𝑖𝑟 ) 𝑞 ) ⟩ } ⟩ } )
68 cts TopSet
69 8 68 cfv ( TopSet ‘ ndx )
70 ctopn TopOpen
71 5 70 cfv ( TopOpen ‘ 𝑟 )
72 cqtop qTop
73 71 10 72 co ( ( TopOpen ‘ 𝑟 ) qTop 𝑓 )
74 69 73 cop ⟨ ( TopSet ‘ ndx ) , ( ( TopOpen ‘ 𝑟 ) qTop 𝑓 ) ⟩
75 cple le
76 8 75 cfv ( le ‘ ndx )
77 5 75 cfv ( le ‘ 𝑟 )
78 10 77 ccom ( 𝑓 ∘ ( le ‘ 𝑟 ) )
79 10 ccnv 𝑓
80 78 79 ccom ( ( 𝑓 ∘ ( le ‘ 𝑟 ) ) ∘ 𝑓 )
81 76 80 cop ⟨ ( le ‘ ndx ) , ( ( 𝑓 ∘ ( le ‘ 𝑟 ) ) ∘ 𝑓 ) ⟩
82 cds dist
83 8 82 cfv ( dist ‘ ndx )
84 vy 𝑦
85 vn 𝑛
86 cn
87 vg 𝑔
88 vh
89 16 16 cxp ( 𝑣 × 𝑣 )
90 cmap m
91 c1 1
92 cfz ...
93 85 cv 𝑛
94 91 93 92 co ( 1 ... 𝑛 )
95 89 94 90 co ( ( 𝑣 × 𝑣 ) ↑m ( 1 ... 𝑛 ) )
96 c1st 1st
97 88 cv
98 91 97 cfv ( ‘ 1 )
99 98 96 cfv ( 1st ‘ ( ‘ 1 ) )
100 99 10 cfv ( 𝑓 ‘ ( 1st ‘ ( ‘ 1 ) ) )
101 49 cv 𝑥
102 100 101 wceq ( 𝑓 ‘ ( 1st ‘ ( ‘ 1 ) ) ) = 𝑥
103 c2nd 2nd
104 93 97 cfv ( 𝑛 )
105 104 103 cfv ( 2nd ‘ ( 𝑛 ) )
106 105 10 cfv ( 𝑓 ‘ ( 2nd ‘ ( 𝑛 ) ) )
107 84 cv 𝑦
108 106 107 wceq ( 𝑓 ‘ ( 2nd ‘ ( 𝑛 ) ) ) = 𝑦
109 vi 𝑖
110 cmin
111 93 91 110 co ( 𝑛 − 1 )
112 91 111 92 co ( 1 ... ( 𝑛 − 1 ) )
113 109 cv 𝑖
114 113 97 cfv ( 𝑖 )
115 114 103 cfv ( 2nd ‘ ( 𝑖 ) )
116 115 10 cfv ( 𝑓 ‘ ( 2nd ‘ ( 𝑖 ) ) )
117 caddc +
118 113 91 117 co ( 𝑖 + 1 )
119 118 97 cfv ( ‘ ( 𝑖 + 1 ) )
120 119 96 cfv ( 1st ‘ ( ‘ ( 𝑖 + 1 ) ) )
121 120 10 cfv ( 𝑓 ‘ ( 1st ‘ ( ‘ ( 𝑖 + 1 ) ) ) )
122 116 121 wceq ( 𝑓 ‘ ( 2nd ‘ ( 𝑖 ) ) ) = ( 𝑓 ‘ ( 1st ‘ ( ‘ ( 𝑖 + 1 ) ) ) )
123 122 109 112 wral 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑓 ‘ ( 2nd ‘ ( 𝑖 ) ) ) = ( 𝑓 ‘ ( 1st ‘ ( ‘ ( 𝑖 + 1 ) ) ) )
124 102 108 123 w3a ( ( 𝑓 ‘ ( 1st ‘ ( ‘ 1 ) ) ) = 𝑥 ∧ ( 𝑓 ‘ ( 2nd ‘ ( 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑓 ‘ ( 2nd ‘ ( 𝑖 ) ) ) = ( 𝑓 ‘ ( 1st ‘ ( ‘ ( 𝑖 + 1 ) ) ) ) )
125 124 88 95 crab { ∈ ( ( 𝑣 × 𝑣 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝑓 ‘ ( 1st ‘ ( ‘ 1 ) ) ) = 𝑥 ∧ ( 𝑓 ‘ ( 2nd ‘ ( 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑓 ‘ ( 2nd ‘ ( 𝑖 ) ) ) = ( 𝑓 ‘ ( 1st ‘ ( ‘ ( 𝑖 + 1 ) ) ) ) ) }
126 cxrs *𝑠
127 cgsu Σg
128 5 82 cfv ( dist ‘ 𝑟 )
129 87 cv 𝑔
130 128 129 ccom ( ( dist ‘ 𝑟 ) ∘ 𝑔 )
131 126 130 127 co ( ℝ*𝑠 Σg ( ( dist ‘ 𝑟 ) ∘ 𝑔 ) )
132 87 125 131 cmpt ( 𝑔 ∈ { ∈ ( ( 𝑣 × 𝑣 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝑓 ‘ ( 1st ‘ ( ‘ 1 ) ) ) = 𝑥 ∧ ( 𝑓 ‘ ( 2nd ‘ ( 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑓 ‘ ( 2nd ‘ ( 𝑖 ) ) ) = ( 𝑓 ‘ ( 1st ‘ ( ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( ( dist ‘ 𝑟 ) ∘ 𝑔 ) ) )
133 132 crn ran ( 𝑔 ∈ { ∈ ( ( 𝑣 × 𝑣 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝑓 ‘ ( 1st ‘ ( ‘ 1 ) ) ) = 𝑥 ∧ ( 𝑓 ‘ ( 2nd ‘ ( 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑓 ‘ ( 2nd ‘ ( 𝑖 ) ) ) = ( 𝑓 ‘ ( 1st ‘ ( ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( ( dist ‘ 𝑟 ) ∘ 𝑔 ) ) )
134 85 86 133 ciun 𝑛 ∈ ℕ ran ( 𝑔 ∈ { ∈ ( ( 𝑣 × 𝑣 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝑓 ‘ ( 1st ‘ ( ‘ 1 ) ) ) = 𝑥 ∧ ( 𝑓 ‘ ( 2nd ‘ ( 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑓 ‘ ( 2nd ‘ ( 𝑖 ) ) ) = ( 𝑓 ‘ ( 1st ‘ ( ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( ( dist ‘ 𝑟 ) ∘ 𝑔 ) ) )
135 cxr *
136 clt <
137 134 135 136 cinf inf ( 𝑛 ∈ ℕ ran ( 𝑔 ∈ { ∈ ( ( 𝑣 × 𝑣 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝑓 ‘ ( 1st ‘ ( ‘ 1 ) ) ) = 𝑥 ∧ ( 𝑓 ‘ ( 2nd ‘ ( 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑓 ‘ ( 2nd ‘ ( 𝑖 ) ) ) = ( 𝑓 ‘ ( 1st ‘ ( ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( ( dist ‘ 𝑟 ) ∘ 𝑔 ) ) ) , ℝ* , < )
138 49 84 11 11 137 cmpo ( 𝑥 ∈ ran 𝑓 , 𝑦 ∈ ran 𝑓 ↦ inf ( 𝑛 ∈ ℕ ran ( 𝑔 ∈ { ∈ ( ( 𝑣 × 𝑣 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝑓 ‘ ( 1st ‘ ( ‘ 1 ) ) ) = 𝑥 ∧ ( 𝑓 ‘ ( 2nd ‘ ( 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑓 ‘ ( 2nd ‘ ( 𝑖 ) ) ) = ( 𝑓 ‘ ( 1st ‘ ( ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( ( dist ‘ 𝑟 ) ∘ 𝑔 ) ) ) , ℝ* , < ) )
139 83 138 cop ⟨ ( dist ‘ ndx ) , ( 𝑥 ∈ ran 𝑓 , 𝑦 ∈ ran 𝑓 ↦ inf ( 𝑛 ∈ ℕ ran ( 𝑔 ∈ { ∈ ( ( 𝑣 × 𝑣 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝑓 ‘ ( 1st ‘ ( ‘ 1 ) ) ) = 𝑥 ∧ ( 𝑓 ‘ ( 2nd ‘ ( 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑓 ‘ ( 2nd ‘ ( 𝑖 ) ) ) = ( 𝑓 ‘ ( 1st ‘ ( ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( ( dist ‘ 𝑟 ) ∘ 𝑔 ) ) ) , ℝ* , < ) ) ⟩
140 74 81 139 ctp { ⟨ ( TopSet ‘ ndx ) , ( ( TopOpen ‘ 𝑟 ) qTop 𝑓 ) ⟩ , ⟨ ( le ‘ ndx ) , ( ( 𝑓 ∘ ( le ‘ 𝑟 ) ) ∘ 𝑓 ) ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑥 ∈ ran 𝑓 , 𝑦 ∈ ran 𝑓 ↦ inf ( 𝑛 ∈ ℕ ran ( 𝑔 ∈ { ∈ ( ( 𝑣 × 𝑣 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝑓 ‘ ( 1st ‘ ( ‘ 1 ) ) ) = 𝑥 ∧ ( 𝑓 ‘ ( 2nd ‘ ( 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑓 ‘ ( 2nd ‘ ( 𝑖 ) ) ) = ( 𝑓 ‘ ( 1st ‘ ( ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( ( dist ‘ 𝑟 ) ∘ 𝑔 ) ) ) , ℝ* , < ) ) ⟩ }
141 67 140 cun ( ( { ⟨ ( Base ‘ ndx ) , ran 𝑓 ⟩ , ⟨ ( +g ‘ ndx ) , 𝑝𝑣 𝑞𝑣 { ⟨ ⟨ ( 𝑓𝑝 ) , ( 𝑓𝑞 ) ⟩ , ( 𝑓 ‘ ( 𝑝 ( +g𝑟 ) 𝑞 ) ) ⟩ } ⟩ , ⟨ ( .r ‘ ndx ) , 𝑝𝑣 𝑞𝑣 { ⟨ ⟨ ( 𝑓𝑝 ) , ( 𝑓𝑞 ) ⟩ , ( 𝑓 ‘ ( 𝑝 ( .r𝑟 ) 𝑞 ) ) ⟩ } ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑟 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , 𝑞𝑣 ( 𝑝 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑥 ∈ { ( 𝑓𝑞 ) } ↦ ( 𝑓 ‘ ( 𝑝 ( ·𝑠𝑟 ) 𝑞 ) ) ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , 𝑝𝑣 𝑞𝑣 { ⟨ ⟨ ( 𝑓𝑝 ) , ( 𝑓𝑞 ) ⟩ , ( 𝑝 ( ·𝑖𝑟 ) 𝑞 ) ⟩ } ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopOpen ‘ 𝑟 ) qTop 𝑓 ) ⟩ , ⟨ ( le ‘ ndx ) , ( ( 𝑓 ∘ ( le ‘ 𝑟 ) ) ∘ 𝑓 ) ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑥 ∈ ran 𝑓 , 𝑦 ∈ ran 𝑓 ↦ inf ( 𝑛 ∈ ℕ ran ( 𝑔 ∈ { ∈ ( ( 𝑣 × 𝑣 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝑓 ‘ ( 1st ‘ ( ‘ 1 ) ) ) = 𝑥 ∧ ( 𝑓 ‘ ( 2nd ‘ ( 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑓 ‘ ( 2nd ‘ ( 𝑖 ) ) ) = ( 𝑓 ‘ ( 1st ‘ ( ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( ( dist ‘ 𝑟 ) ∘ 𝑔 ) ) ) , ℝ* , < ) ) ⟩ } )
142 7 6 141 csb ( Base ‘ 𝑟 ) / 𝑣 ( ( { ⟨ ( Base ‘ ndx ) , ran 𝑓 ⟩ , ⟨ ( +g ‘ ndx ) , 𝑝𝑣 𝑞𝑣 { ⟨ ⟨ ( 𝑓𝑝 ) , ( 𝑓𝑞 ) ⟩ , ( 𝑓 ‘ ( 𝑝 ( +g𝑟 ) 𝑞 ) ) ⟩ } ⟩ , ⟨ ( .r ‘ ndx ) , 𝑝𝑣 𝑞𝑣 { ⟨ ⟨ ( 𝑓𝑝 ) , ( 𝑓𝑞 ) ⟩ , ( 𝑓 ‘ ( 𝑝 ( .r𝑟 ) 𝑞 ) ) ⟩ } ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑟 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , 𝑞𝑣 ( 𝑝 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑥 ∈ { ( 𝑓𝑞 ) } ↦ ( 𝑓 ‘ ( 𝑝 ( ·𝑠𝑟 ) 𝑞 ) ) ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , 𝑝𝑣 𝑞𝑣 { ⟨ ⟨ ( 𝑓𝑝 ) , ( 𝑓𝑞 ) ⟩ , ( 𝑝 ( ·𝑖𝑟 ) 𝑞 ) ⟩ } ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopOpen ‘ 𝑟 ) qTop 𝑓 ) ⟩ , ⟨ ( le ‘ ndx ) , ( ( 𝑓 ∘ ( le ‘ 𝑟 ) ) ∘ 𝑓 ) ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑥 ∈ ran 𝑓 , 𝑦 ∈ ran 𝑓 ↦ inf ( 𝑛 ∈ ℕ ran ( 𝑔 ∈ { ∈ ( ( 𝑣 × 𝑣 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝑓 ‘ ( 1st ‘ ( ‘ 1 ) ) ) = 𝑥 ∧ ( 𝑓 ‘ ( 2nd ‘ ( 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑓 ‘ ( 2nd ‘ ( 𝑖 ) ) ) = ( 𝑓 ‘ ( 1st ‘ ( ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( ( dist ‘ 𝑟 ) ∘ 𝑔 ) ) ) , ℝ* , < ) ) ⟩ } )
143 1 3 2 2 142 cmpo ( 𝑓 ∈ V , 𝑟 ∈ V ↦ ( Base ‘ 𝑟 ) / 𝑣 ( ( { ⟨ ( Base ‘ ndx ) , ran 𝑓 ⟩ , ⟨ ( +g ‘ ndx ) , 𝑝𝑣 𝑞𝑣 { ⟨ ⟨ ( 𝑓𝑝 ) , ( 𝑓𝑞 ) ⟩ , ( 𝑓 ‘ ( 𝑝 ( +g𝑟 ) 𝑞 ) ) ⟩ } ⟩ , ⟨ ( .r ‘ ndx ) , 𝑝𝑣 𝑞𝑣 { ⟨ ⟨ ( 𝑓𝑝 ) , ( 𝑓𝑞 ) ⟩ , ( 𝑓 ‘ ( 𝑝 ( .r𝑟 ) 𝑞 ) ) ⟩ } ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑟 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , 𝑞𝑣 ( 𝑝 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑥 ∈ { ( 𝑓𝑞 ) } ↦ ( 𝑓 ‘ ( 𝑝 ( ·𝑠𝑟 ) 𝑞 ) ) ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , 𝑝𝑣 𝑞𝑣 { ⟨ ⟨ ( 𝑓𝑝 ) , ( 𝑓𝑞 ) ⟩ , ( 𝑝 ( ·𝑖𝑟 ) 𝑞 ) ⟩ } ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopOpen ‘ 𝑟 ) qTop 𝑓 ) ⟩ , ⟨ ( le ‘ ndx ) , ( ( 𝑓 ∘ ( le ‘ 𝑟 ) ) ∘ 𝑓 ) ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑥 ∈ ran 𝑓 , 𝑦 ∈ ran 𝑓 ↦ inf ( 𝑛 ∈ ℕ ran ( 𝑔 ∈ { ∈ ( ( 𝑣 × 𝑣 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝑓 ‘ ( 1st ‘ ( ‘ 1 ) ) ) = 𝑥 ∧ ( 𝑓 ‘ ( 2nd ‘ ( 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑓 ‘ ( 2nd ‘ ( 𝑖 ) ) ) = ( 𝑓 ‘ ( 1st ‘ ( ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( ( dist ‘ 𝑟 ) ∘ 𝑔 ) ) ) , ℝ* , < ) ) ⟩ } ) )
144 0 143 wceq s = ( 𝑓 ∈ V , 𝑟 ∈ V ↦ ( Base ‘ 𝑟 ) / 𝑣 ( ( { ⟨ ( Base ‘ ndx ) , ran 𝑓 ⟩ , ⟨ ( +g ‘ ndx ) , 𝑝𝑣 𝑞𝑣 { ⟨ ⟨ ( 𝑓𝑝 ) , ( 𝑓𝑞 ) ⟩ , ( 𝑓 ‘ ( 𝑝 ( +g𝑟 ) 𝑞 ) ) ⟩ } ⟩ , ⟨ ( .r ‘ ndx ) , 𝑝𝑣 𝑞𝑣 { ⟨ ⟨ ( 𝑓𝑝 ) , ( 𝑓𝑞 ) ⟩ , ( 𝑓 ‘ ( 𝑝 ( .r𝑟 ) 𝑞 ) ) ⟩ } ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑟 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , 𝑞𝑣 ( 𝑝 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑥 ∈ { ( 𝑓𝑞 ) } ↦ ( 𝑓 ‘ ( 𝑝 ( ·𝑠𝑟 ) 𝑞 ) ) ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , 𝑝𝑣 𝑞𝑣 { ⟨ ⟨ ( 𝑓𝑝 ) , ( 𝑓𝑞 ) ⟩ , ( 𝑝 ( ·𝑖𝑟 ) 𝑞 ) ⟩ } ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopOpen ‘ 𝑟 ) qTop 𝑓 ) ⟩ , ⟨ ( le ‘ ndx ) , ( ( 𝑓 ∘ ( le ‘ 𝑟 ) ) ∘ 𝑓 ) ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑥 ∈ ran 𝑓 , 𝑦 ∈ ran 𝑓 ↦ inf ( 𝑛 ∈ ℕ ran ( 𝑔 ∈ { ∈ ( ( 𝑣 × 𝑣 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝑓 ‘ ( 1st ‘ ( ‘ 1 ) ) ) = 𝑥 ∧ ( 𝑓 ‘ ( 2nd ‘ ( 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑓 ‘ ( 2nd ‘ ( 𝑖 ) ) ) = ( 𝑓 ‘ ( 1st ‘ ( ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( ( dist ‘ 𝑟 ) ∘ 𝑔 ) ) ) , ℝ* , < ) ) ⟩ } ) )