Metamath Proof Explorer


Definition df-ims

Description: Define the induced metric on a normed complex vector space. (Contributed by NM, 11-Sep-2007) (New usage is discouraged.)

Ref Expression
Assertion df-ims IndMet = ( 𝑢 ∈ NrmCVec ↦ ( ( normCV𝑢 ) ∘ ( −𝑣𝑢 ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cims IndMet
1 vu 𝑢
2 cnv NrmCVec
3 cnmcv normCV
4 1 cv 𝑢
5 4 3 cfv ( normCV𝑢 )
6 cnsb 𝑣
7 4 6 cfv ( −𝑣𝑢 )
8 5 7 ccom ( ( normCV𝑢 ) ∘ ( −𝑣𝑢 ) )
9 1 2 8 cmpt ( 𝑢 ∈ NrmCVec ↦ ( ( normCV𝑢 ) ∘ ( −𝑣𝑢 ) ) )
10 0 9 wceq IndMet = ( 𝑢 ∈ NrmCVec ↦ ( ( normCV𝑢 ) ∘ ( −𝑣𝑢 ) ) )