Metamath Proof Explorer
Description: Define the induced metric on a normed complex vector space.
(Contributed by NM, 11-Sep-2007) (New usage is discouraged.)
|
|
Ref |
Expression |
|
Assertion |
df-ims |
⊢ IndMet = ( 𝑢 ∈ NrmCVec ↦ ( ( normCV ‘ 𝑢 ) ∘ ( −𝑣 ‘ 𝑢 ) ) ) |
Detailed syntax breakdown
Step |
Hyp |
Ref |
Expression |
0 |
|
cims |
⊢ IndMet |
1 |
|
vu |
⊢ 𝑢 |
2 |
|
cnv |
⊢ NrmCVec |
3 |
|
cnmcv |
⊢ normCV |
4 |
1
|
cv |
⊢ 𝑢 |
5 |
4 3
|
cfv |
⊢ ( normCV ‘ 𝑢 ) |
6 |
|
cnsb |
⊢ −𝑣 |
7 |
4 6
|
cfv |
⊢ ( −𝑣 ‘ 𝑢 ) |
8 |
5 7
|
ccom |
⊢ ( ( normCV ‘ 𝑢 ) ∘ ( −𝑣 ‘ 𝑢 ) ) |
9 |
1 2 8
|
cmpt |
⊢ ( 𝑢 ∈ NrmCVec ↦ ( ( normCV ‘ 𝑢 ) ∘ ( −𝑣 ‘ 𝑢 ) ) ) |
10 |
0 9
|
wceq |
⊢ IndMet = ( 𝑢 ∈ NrmCVec ↦ ( ( normCV ‘ 𝑢 ) ∘ ( −𝑣 ‘ 𝑢 ) ) ) |