Metamath Proof Explorer


Definition df-in

Description: Define the intersection of two classes. Definition 5.6 of TakeutiZaring p. 16. For example, ( { 1 , 3 } i^i { 1 , 8 } ) = { 1 } ( ex-in ). Contrast this operation with union ( A u. B ) ( df-un ) and difference ( A \ B ) ( df-dif ). For alternate definitions in terms of class difference, requiring no dummy variables, see dfin2 and dfin4 . For intersection defined in terms of union, see dfin3 . (Contributed by NM, 29-Apr-1994)

Ref Expression
Assertion df-in ( 𝐴𝐵 ) = { 𝑥 ∣ ( 𝑥𝐴𝑥𝐵 ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA 𝐴
1 cB 𝐵
2 0 1 cin ( 𝐴𝐵 )
3 vx 𝑥
4 3 cv 𝑥
5 4 0 wcel 𝑥𝐴
6 4 1 wcel 𝑥𝐵
7 5 6 wa ( 𝑥𝐴𝑥𝐵 )
8 7 3 cab { 𝑥 ∣ ( 𝑥𝐴𝑥𝐵 ) }
9 2 8 wceq ( 𝐴𝐵 ) = { 𝑥 ∣ ( 𝑥𝐴𝑥𝐵 ) }