Metamath Proof Explorer


Definition df-ind

Description: Define the indicator function generator. (Contributed by Thierry Arnoux, 20-Jan-2017)

Ref Expression
Assertion df-ind 𝟭 = ( 𝑜 ∈ V ↦ ( 𝑎 ∈ 𝒫 𝑜 ↦ ( 𝑥𝑜 ↦ if ( 𝑥𝑎 , 1 , 0 ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cind 𝟭
1 vo 𝑜
2 cvv V
3 va 𝑎
4 1 cv 𝑜
5 4 cpw 𝒫 𝑜
6 vx 𝑥
7 6 cv 𝑥
8 3 cv 𝑎
9 7 8 wcel 𝑥𝑎
10 c1 1
11 cc0 0
12 9 10 11 cif if ( 𝑥𝑎 , 1 , 0 )
13 6 4 12 cmpt ( 𝑥𝑜 ↦ if ( 𝑥𝑎 , 1 , 0 ) )
14 3 5 13 cmpt ( 𝑎 ∈ 𝒫 𝑜 ↦ ( 𝑥𝑜 ↦ if ( 𝑥𝑎 , 1 , 0 ) ) )
15 1 2 14 cmpt ( 𝑜 ∈ V ↦ ( 𝑎 ∈ 𝒫 𝑜 ↦ ( 𝑥𝑜 ↦ if ( 𝑥𝑎 , 1 , 0 ) ) ) )
16 0 15 wceq 𝟭 = ( 𝑜 ∈ V ↦ ( 𝑎 ∈ 𝒫 𝑜 ↦ ( 𝑥𝑜 ↦ if ( 𝑥𝑎 , 1 , 0 ) ) ) )