| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cinito | ⊢ InitO | 
						
							| 1 |  | vc | ⊢ 𝑐 | 
						
							| 2 |  | ccat | ⊢ Cat | 
						
							| 3 |  | va | ⊢ 𝑎 | 
						
							| 4 |  | cbs | ⊢ Base | 
						
							| 5 | 1 | cv | ⊢ 𝑐 | 
						
							| 6 | 5 4 | cfv | ⊢ ( Base ‘ 𝑐 ) | 
						
							| 7 |  | vb | ⊢ 𝑏 | 
						
							| 8 |  | vh | ⊢ ℎ | 
						
							| 9 | 8 | cv | ⊢ ℎ | 
						
							| 10 | 3 | cv | ⊢ 𝑎 | 
						
							| 11 |  | chom | ⊢ Hom | 
						
							| 12 | 5 11 | cfv | ⊢ ( Hom  ‘ 𝑐 ) | 
						
							| 13 | 7 | cv | ⊢ 𝑏 | 
						
							| 14 | 10 13 12 | co | ⊢ ( 𝑎 ( Hom  ‘ 𝑐 ) 𝑏 ) | 
						
							| 15 | 9 14 | wcel | ⊢ ℎ  ∈  ( 𝑎 ( Hom  ‘ 𝑐 ) 𝑏 ) | 
						
							| 16 | 15 8 | weu | ⊢ ∃! ℎ ℎ  ∈  ( 𝑎 ( Hom  ‘ 𝑐 ) 𝑏 ) | 
						
							| 17 | 16 7 6 | wral | ⊢ ∀ 𝑏  ∈  ( Base ‘ 𝑐 ) ∃! ℎ ℎ  ∈  ( 𝑎 ( Hom  ‘ 𝑐 ) 𝑏 ) | 
						
							| 18 | 17 3 6 | crab | ⊢ { 𝑎  ∈  ( Base ‘ 𝑐 )  ∣  ∀ 𝑏  ∈  ( Base ‘ 𝑐 ) ∃! ℎ ℎ  ∈  ( 𝑎 ( Hom  ‘ 𝑐 ) 𝑏 ) } | 
						
							| 19 | 1 2 18 | cmpt | ⊢ ( 𝑐  ∈  Cat  ↦  { 𝑎  ∈  ( Base ‘ 𝑐 )  ∣  ∀ 𝑏  ∈  ( Base ‘ 𝑐 ) ∃! ℎ ℎ  ∈  ( 𝑎 ( Hom  ‘ 𝑐 ) 𝑏 ) } ) | 
						
							| 20 | 0 19 | wceq | ⊢ InitO  =  ( 𝑐  ∈  Cat  ↦  { 𝑎  ∈  ( Base ‘ 𝑐 )  ∣  ∀ 𝑏  ∈  ( Base ‘ 𝑐 ) ∃! ℎ ℎ  ∈  ( 𝑎 ( Hom  ‘ 𝑐 ) 𝑏 ) } ) |