Metamath Proof Explorer


Definition df-inr

Description: Right injection of a disjoint union. (Contributed by Mario Carneiro, 21-Jun-2022)

Ref Expression
Assertion df-inr inr = ( 𝑥 ∈ V ↦ ⟨ 1o , 𝑥 ⟩ )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cinr inr
1 vx 𝑥
2 cvv V
3 c1o 1o
4 1 cv 𝑥
5 3 4 cop ⟨ 1o , 𝑥
6 1 2 5 cmpt ( 𝑥 ∈ V ↦ ⟨ 1o , 𝑥 ⟩ )
7 0 6 wceq inr = ( 𝑥 ∈ V ↦ ⟨ 1o , 𝑥 ⟩ )