Database BASIC CATEGORY THEORY Categories Sections, inverses, isomorphisms df-inv  
				
		 
		
			
		 
		Description:   The inverse relation in a category.  Given arrows f : X --> Y  and
       g : Y --> X  , we say g Inv f  , that is, g  is an inverse of
       f  , if g  is a section of f  and f  is a section of g  .
       Definition 3.8 of Adamek  p. 28.  (Contributed by FL , 22-Dec-2008) 
       (Revised by Mario Carneiro , 2-Jan-2017) 
		
			
				
					Ref 
					Expression 
				 
				
					Assertion 
					df-inv ⊢   Inv  =  ( 𝑐   ∈  Cat  ↦  ( 𝑥   ∈  ( Base ‘ 𝑐  ) ,  𝑦   ∈  ( Base ‘ 𝑐  )  ↦  ( ( 𝑥  ( Sect ‘ 𝑐  ) 𝑦  )  ∩  ◡ 𝑦  ( Sect ‘ 𝑐  ) 𝑥  ) ) ) )  
			
		 
		
				Detailed syntax breakdown 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							0 
								
							 
							cinv ⊢  Inv  
						
							1 
								
							 
							vc ⊢  𝑐   
						
							2 
								
							 
							ccat ⊢  Cat  
						
							3 
								
							 
							vx ⊢  𝑥   
						
							4 
								
							 
							cbs ⊢  Base  
						
							5 
								1 
							 
							cv ⊢  𝑐   
						
							6 
								5  4 
							 
							cfv ⊢  ( Base ‘ 𝑐  )  
						
							7 
								
							 
							vy ⊢  𝑦   
						
							8 
								3 
							 
							cv ⊢  𝑥   
						
							9 
								
							 
							csect ⊢  Sect  
						
							10 
								5  9 
							 
							cfv ⊢  ( Sect ‘ 𝑐  )  
						
							11 
								7 
							 
							cv ⊢  𝑦   
						
							12 
								8  11  10 
							 
							co ⊢  ( 𝑥  ( Sect ‘ 𝑐  ) 𝑦  )  
						
							13 
								11  8  10 
							 
							co ⊢  ( 𝑦  ( Sect ‘ 𝑐  ) 𝑥  )  
						
							14 
								13 
							 
							ccnv ⊢  ◡ 𝑦  ( Sect ‘ 𝑐  ) 𝑥  )  
						
							15 
								12  14 
							 
							cin ⊢  ( ( 𝑥  ( Sect ‘ 𝑐  ) 𝑦  )  ∩  ◡ 𝑦  ( Sect ‘ 𝑐  ) 𝑥  ) )  
						
							16 
								3  7  6  6  15 
							 
							cmpo ⊢  ( 𝑥   ∈  ( Base ‘ 𝑐  ) ,  𝑦   ∈  ( Base ‘ 𝑐  )  ↦  ( ( 𝑥  ( Sect ‘ 𝑐  ) 𝑦  )  ∩  ◡ 𝑦  ( Sect ‘ 𝑐  ) 𝑥  ) ) )  
						
							17 
								1  2  16 
							 
							cmpt ⊢  ( 𝑐   ∈  Cat  ↦  ( 𝑥   ∈  ( Base ‘ 𝑐  ) ,  𝑦   ∈  ( Base ‘ 𝑐  )  ↦  ( ( 𝑥  ( Sect ‘ 𝑐  ) 𝑦  )  ∩  ◡ 𝑦  ( Sect ‘ 𝑐  ) 𝑥  ) ) ) )  
						
							18 
								0  17 
							 
							wceq ⊢  Inv  =  ( 𝑐   ∈  Cat  ↦  ( 𝑥   ∈  ( Base ‘ 𝑐  ) ,  𝑦   ∈  ( Base ‘ 𝑐  )  ↦  ( ( 𝑥  ( Sect ‘ 𝑐  ) 𝑦  )  ∩  ◡ 𝑦  ( Sect ‘ 𝑐  ) 𝑥  ) ) ) )