Database
BASIC CATEGORY THEORY
Categories
Sections, inverses, isomorphisms
df-inv
Metamath Proof Explorer
Description: The inverse relation in a category. Given arrows f : X --> Y and
g : Y --> X , we say g Inv f , that is, g is an inverse of
f , if g is a section of f and f is a section of g .
Definition 3.8 of Adamek p. 28. (Contributed by FL , 22-Dec-2008)
(Revised by Mario Carneiro , 2-Jan-2017)
Ref
Expression
Assertion
df-inv
⊢ Inv = ( 𝑐 ∈ Cat ↦ ( 𝑥 ∈ ( Base ‘ 𝑐 ) , 𝑦 ∈ ( Base ‘ 𝑐 ) ↦ ( ( 𝑥 ( Sect ‘ 𝑐 ) 𝑦 ) ∩ ◡ ( 𝑦 ( Sect ‘ 𝑐 ) 𝑥 ) ) ) )
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cinv
⊢ Inv
1
vc
⊢ 𝑐
2
ccat
⊢ Cat
3
vx
⊢ 𝑥
4
cbs
⊢ Base
5
1
cv
⊢ 𝑐
6
5 4
cfv
⊢ ( Base ‘ 𝑐 )
7
vy
⊢ 𝑦
8
3
cv
⊢ 𝑥
9
csect
⊢ Sect
10
5 9
cfv
⊢ ( Sect ‘ 𝑐 )
11
7
cv
⊢ 𝑦
12
8 11 10
co
⊢ ( 𝑥 ( Sect ‘ 𝑐 ) 𝑦 )
13
11 8 10
co
⊢ ( 𝑦 ( Sect ‘ 𝑐 ) 𝑥 )
14
13
ccnv
⊢ ◡ ( 𝑦 ( Sect ‘ 𝑐 ) 𝑥 )
15
12 14
cin
⊢ ( ( 𝑥 ( Sect ‘ 𝑐 ) 𝑦 ) ∩ ◡ ( 𝑦 ( Sect ‘ 𝑐 ) 𝑥 ) )
16
3 7 6 6 15
cmpo
⊢ ( 𝑥 ∈ ( Base ‘ 𝑐 ) , 𝑦 ∈ ( Base ‘ 𝑐 ) ↦ ( ( 𝑥 ( Sect ‘ 𝑐 ) 𝑦 ) ∩ ◡ ( 𝑦 ( Sect ‘ 𝑐 ) 𝑥 ) ) )
17
1 2 16
cmpt
⊢ ( 𝑐 ∈ Cat ↦ ( 𝑥 ∈ ( Base ‘ 𝑐 ) , 𝑦 ∈ ( Base ‘ 𝑐 ) ↦ ( ( 𝑥 ( Sect ‘ 𝑐 ) 𝑦 ) ∩ ◡ ( 𝑦 ( Sect ‘ 𝑐 ) 𝑥 ) ) ) )
18
0 17
wceq
⊢ Inv = ( 𝑐 ∈ Cat ↦ ( 𝑥 ∈ ( Base ‘ 𝑐 ) , 𝑦 ∈ ( Base ‘ 𝑐 ) ↦ ( ( 𝑥 ( Sect ‘ 𝑐 ) 𝑦 ) ∩ ◡ ( 𝑦 ( Sect ‘ 𝑐 ) 𝑥 ) ) ) )