Metamath Proof Explorer


Definition df-inv

Description: The inverse relation in a category. Given arrows f : X --> Y and g : Y --> X , we say g Inv f , that is, g is an inverse of f , if g is a section of f and f is a section of g . Definition 3.8 of Adamek p. 28. (Contributed by FL, 22-Dec-2008) (Revised by Mario Carneiro, 2-Jan-2017)

Ref Expression
Assertion df-inv Inv = ( 𝑐 ∈ Cat ↦ ( 𝑥 ∈ ( Base ‘ 𝑐 ) , 𝑦 ∈ ( Base ‘ 𝑐 ) ↦ ( ( 𝑥 ( Sect ‘ 𝑐 ) 𝑦 ) ∩ ( 𝑦 ( Sect ‘ 𝑐 ) 𝑥 ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cinv Inv
1 vc 𝑐
2 ccat Cat
3 vx 𝑥
4 cbs Base
5 1 cv 𝑐
6 5 4 cfv ( Base ‘ 𝑐 )
7 vy 𝑦
8 3 cv 𝑥
9 csect Sect
10 5 9 cfv ( Sect ‘ 𝑐 )
11 7 cv 𝑦
12 8 11 10 co ( 𝑥 ( Sect ‘ 𝑐 ) 𝑦 )
13 11 8 10 co ( 𝑦 ( Sect ‘ 𝑐 ) 𝑥 )
14 13 ccnv ( 𝑦 ( Sect ‘ 𝑐 ) 𝑥 )
15 12 14 cin ( ( 𝑥 ( Sect ‘ 𝑐 ) 𝑦 ) ∩ ( 𝑦 ( Sect ‘ 𝑐 ) 𝑥 ) )
16 3 7 6 6 15 cmpo ( 𝑥 ∈ ( Base ‘ 𝑐 ) , 𝑦 ∈ ( Base ‘ 𝑐 ) ↦ ( ( 𝑥 ( Sect ‘ 𝑐 ) 𝑦 ) ∩ ( 𝑦 ( Sect ‘ 𝑐 ) 𝑥 ) ) )
17 1 2 16 cmpt ( 𝑐 ∈ Cat ↦ ( 𝑥 ∈ ( Base ‘ 𝑐 ) , 𝑦 ∈ ( Base ‘ 𝑐 ) ↦ ( ( 𝑥 ( Sect ‘ 𝑐 ) 𝑦 ) ∩ ( 𝑦 ( Sect ‘ 𝑐 ) 𝑥 ) ) ) )
18 0 17 wceq Inv = ( 𝑐 ∈ Cat ↦ ( 𝑥 ∈ ( Base ‘ 𝑐 ) , 𝑦 ∈ ( Base ‘ 𝑐 ) ↦ ( ( 𝑥 ( Sect ‘ 𝑐 ) 𝑦 ) ∩ ( 𝑦 ( Sect ‘ 𝑐 ) 𝑥 ) ) ) )