Description: Define multiplicative inverse. (Contributed by NM, 21-Sep-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | df-invr | ⊢ invr = ( 𝑟 ∈ V ↦ ( invg ‘ ( ( mulGrp ‘ 𝑟 ) ↾s ( Unit ‘ 𝑟 ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cinvr | ⊢ invr | |
1 | vr | ⊢ 𝑟 | |
2 | cvv | ⊢ V | |
3 | cminusg | ⊢ invg | |
4 | cmgp | ⊢ mulGrp | |
5 | 1 | cv | ⊢ 𝑟 |
6 | 5 4 | cfv | ⊢ ( mulGrp ‘ 𝑟 ) |
7 | cress | ⊢ ↾s | |
8 | cui | ⊢ Unit | |
9 | 5 8 | cfv | ⊢ ( Unit ‘ 𝑟 ) |
10 | 6 9 7 | co | ⊢ ( ( mulGrp ‘ 𝑟 ) ↾s ( Unit ‘ 𝑟 ) ) |
11 | 10 3 | cfv | ⊢ ( invg ‘ ( ( mulGrp ‘ 𝑟 ) ↾s ( Unit ‘ 𝑟 ) ) ) |
12 | 1 2 11 | cmpt | ⊢ ( 𝑟 ∈ V ↦ ( invg ‘ ( ( mulGrp ‘ 𝑟 ) ↾s ( Unit ‘ 𝑟 ) ) ) ) |
13 | 0 12 | wceq | ⊢ invr = ( 𝑟 ∈ V ↦ ( invg ‘ ( ( mulGrp ‘ 𝑟 ) ↾s ( Unit ‘ 𝑟 ) ) ) ) |