Metamath Proof Explorer


Definition df-invr

Description: Define multiplicative inverse. (Contributed by NM, 21-Sep-2011)

Ref Expression
Assertion df-invr invr = ( 𝑟 ∈ V ↦ ( invg ‘ ( ( mulGrp ‘ 𝑟 ) ↾s ( Unit ‘ 𝑟 ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cinvr invr
1 vr 𝑟
2 cvv V
3 cminusg invg
4 cmgp mulGrp
5 1 cv 𝑟
6 5 4 cfv ( mulGrp ‘ 𝑟 )
7 cress s
8 cui Unit
9 5 8 cfv ( Unit ‘ 𝑟 )
10 6 9 7 co ( ( mulGrp ‘ 𝑟 ) ↾s ( Unit ‘ 𝑟 ) )
11 10 3 cfv ( invg ‘ ( ( mulGrp ‘ 𝑟 ) ↾s ( Unit ‘ 𝑟 ) ) )
12 1 2 11 cmpt ( 𝑟 ∈ V ↦ ( invg ‘ ( ( mulGrp ‘ 𝑟 ) ↾s ( Unit ‘ 𝑟 ) ) ) )
13 0 12 wceq invr = ( 𝑟 ∈ V ↦ ( invg ‘ ( ( mulGrp ‘ 𝑟 ) ↾s ( Unit ‘ 𝑟 ) ) ) )