Step |
Hyp |
Ref |
Expression |
0 |
|
cismty |
β’ Ismty |
1 |
|
vm |
β’ π |
2 |
|
cxmet |
β’ βMet |
3 |
2
|
crn |
β’ ran βMet |
4 |
3
|
cuni |
β’ βͺ ran βMet |
5 |
|
vn |
β’ π |
6 |
|
vf |
β’ π |
7 |
6
|
cv |
β’ π |
8 |
1
|
cv |
β’ π |
9 |
8
|
cdm |
β’ dom π |
10 |
9
|
cdm |
β’ dom dom π |
11 |
5
|
cv |
β’ π |
12 |
11
|
cdm |
β’ dom π |
13 |
12
|
cdm |
β’ dom dom π |
14 |
10 13 7
|
wf1o |
β’ π : dom dom π β1-1-ontoβ dom dom π |
15 |
|
vx |
β’ π₯ |
16 |
|
vy |
β’ π¦ |
17 |
15
|
cv |
β’ π₯ |
18 |
16
|
cv |
β’ π¦ |
19 |
17 18 8
|
co |
β’ ( π₯ π π¦ ) |
20 |
17 7
|
cfv |
β’ ( π β π₯ ) |
21 |
18 7
|
cfv |
β’ ( π β π¦ ) |
22 |
20 21 11
|
co |
β’ ( ( π β π₯ ) π ( π β π¦ ) ) |
23 |
19 22
|
wceq |
β’ ( π₯ π π¦ ) = ( ( π β π₯ ) π ( π β π¦ ) ) |
24 |
23 16 10
|
wral |
β’ β π¦ β dom dom π ( π₯ π π¦ ) = ( ( π β π₯ ) π ( π β π¦ ) ) |
25 |
24 15 10
|
wral |
β’ β π₯ β dom dom π β π¦ β dom dom π ( π₯ π π¦ ) = ( ( π β π₯ ) π ( π β π¦ ) ) |
26 |
14 25
|
wa |
β’ ( π : dom dom π β1-1-ontoβ dom dom π β§ β π₯ β dom dom π β π¦ β dom dom π ( π₯ π π¦ ) = ( ( π β π₯ ) π ( π β π¦ ) ) ) |
27 |
26 6
|
cab |
β’ { π β£ ( π : dom dom π β1-1-ontoβ dom dom π β§ β π₯ β dom dom π β π¦ β dom dom π ( π₯ π π¦ ) = ( ( π β π₯ ) π ( π β π¦ ) ) ) } |
28 |
1 5 4 4 27
|
cmpo |
β’ ( π β βͺ ran βMet , π β βͺ ran βMet β¦ { π β£ ( π : dom dom π β1-1-ontoβ dom dom π β§ β π₯ β dom dom π β π¦ β dom dom π ( π₯ π π¦ ) = ( ( π β π₯ ) π ( π β π¦ ) ) ) } ) |
29 |
0 28
|
wceq |
β’ Ismty = ( π β βͺ ran βMet , π β βͺ ran βMet β¦ { π β£ ( π : dom dom π β1-1-ontoβ dom dom π β§ β π₯ β dom dom π β π¦ β dom dom π ( π₯ π π¦ ) = ( ( π β π₯ ) π ( π β π¦ ) ) ) } ) |