Metamath Proof Explorer


Definition df-isom

Description: Define the isomorphism predicate. We read this as " H is an R , S isomorphism of A onto B ". Normally, R and S are ordering relations on A and B respectively. Definition 6.28 of TakeutiZaring p. 32, whose notation is the same as ours except that R and S are subscripts. (Contributed by NM, 4-Mar-1997)

Ref Expression
Assertion df-isom ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ ( 𝐻 : 𝐴1-1-onto𝐵 ∧ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻𝑥 ) 𝑆 ( 𝐻𝑦 ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cH 𝐻
1 cR 𝑅
2 cS 𝑆
3 cA 𝐴
4 cB 𝐵
5 3 4 1 2 0 wiso 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 )
6 3 4 0 wf1o 𝐻 : 𝐴1-1-onto𝐵
7 vx 𝑥
8 vy 𝑦
9 7 cv 𝑥
10 8 cv 𝑦
11 9 10 1 wbr 𝑥 𝑅 𝑦
12 9 0 cfv ( 𝐻𝑥 )
13 10 0 cfv ( 𝐻𝑦 )
14 12 13 2 wbr ( 𝐻𝑥 ) 𝑆 ( 𝐻𝑦 )
15 11 14 wb ( 𝑥 𝑅 𝑦 ↔ ( 𝐻𝑥 ) 𝑆 ( 𝐻𝑦 ) )
16 15 8 3 wral 𝑦𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻𝑥 ) 𝑆 ( 𝐻𝑦 ) )
17 16 7 3 wral 𝑥𝐴𝑦𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻𝑥 ) 𝑆 ( 𝐻𝑦 ) )
18 6 17 wa ( 𝐻 : 𝐴1-1-onto𝐵 ∧ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻𝑥 ) 𝑆 ( 𝐻𝑦 ) ) )
19 5 18 wb ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ ( 𝐻 : 𝐴1-1-onto𝐵 ∧ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻𝑥 ) 𝑆 ( 𝐻𝑦 ) ) ) )