Metamath Proof Explorer


Definition df-itg

Description: Define the full Lebesgue integral, for complex-valued functions to RR . The syntax is designed to be suggestive of the standard notation for integrals. For example, our notation for the integral of x ^ 2 from 0 to 1 is S. ( 0 , 1 ) ( x ^ 2 ) _d x = ( 1 / 3 ) . The only real function of this definition is to break the integral up into nonnegative real parts and send it off to df-itg2 for further processing. Note that this definition cannot handle integrals which evaluate to infinity, because addition and multiplication are not currently defined on extended reals. (You can use df-itg2 directly for this use-case.) (Contributed by Mario Carneiro, 28-Jun-2014)

Ref Expression
Assertion df-itg 𝐴 𝐵 d 𝑥 = Σ 𝑘 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) / 𝑦 if ( ( 𝑥𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA 𝐴
1 cB 𝐵
2 vx 𝑥
3 2 0 1 citg 𝐴 𝐵 d 𝑥
4 vk 𝑘
5 cc0 0
6 cfz ...
7 c3 3
8 5 7 6 co ( 0 ... 3 )
9 ci i
10 cexp
11 4 cv 𝑘
12 9 11 10 co ( i ↑ 𝑘 )
13 cmul ·
14 citg2 2
15 cr
16 cre
17 cdiv /
18 1 12 17 co ( 𝐵 / ( i ↑ 𝑘 ) )
19 18 16 cfv ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) )
20 vy 𝑦
21 2 cv 𝑥
22 21 0 wcel 𝑥𝐴
23 cle
24 20 cv 𝑦
25 5 24 23 wbr 0 ≤ 𝑦
26 22 25 wa ( 𝑥𝐴 ∧ 0 ≤ 𝑦 )
27 26 24 5 cif if ( ( 𝑥𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 )
28 20 19 27 csb ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) / 𝑦 if ( ( 𝑥𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 )
29 2 15 28 cmpt ( 𝑥 ∈ ℝ ↦ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) / 𝑦 if ( ( 𝑥𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) )
30 29 14 cfv ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) / 𝑦 if ( ( 𝑥𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) )
31 12 30 13 co ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) / 𝑦 if ( ( 𝑥𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) )
32 8 31 4 csu Σ 𝑘 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) / 𝑦 if ( ( 𝑥𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) )
33 3 32 wceq 𝐴 𝐵 d 𝑥 = Σ 𝑘 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) / 𝑦 if ( ( 𝑥𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) )