| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cA |
⊢ 𝐴 |
| 1 |
|
cB |
⊢ 𝐵 |
| 2 |
|
vx |
⊢ 𝑥 |
| 3 |
2 0 1
|
citg |
⊢ ∫ 𝐴 𝐵 d 𝑥 |
| 4 |
|
vk |
⊢ 𝑘 |
| 5 |
|
cc0 |
⊢ 0 |
| 6 |
|
cfz |
⊢ ... |
| 7 |
|
c3 |
⊢ 3 |
| 8 |
5 7 6
|
co |
⊢ ( 0 ... 3 ) |
| 9 |
|
ci |
⊢ i |
| 10 |
|
cexp |
⊢ ↑ |
| 11 |
4
|
cv |
⊢ 𝑘 |
| 12 |
9 11 10
|
co |
⊢ ( i ↑ 𝑘 ) |
| 13 |
|
cmul |
⊢ · |
| 14 |
|
citg2 |
⊢ ∫2 |
| 15 |
|
cr |
⊢ ℝ |
| 16 |
|
cre |
⊢ ℜ |
| 17 |
|
cdiv |
⊢ / |
| 18 |
1 12 17
|
co |
⊢ ( 𝐵 / ( i ↑ 𝑘 ) ) |
| 19 |
18 16
|
cfv |
⊢ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) |
| 20 |
|
vy |
⊢ 𝑦 |
| 21 |
2
|
cv |
⊢ 𝑥 |
| 22 |
21 0
|
wcel |
⊢ 𝑥 ∈ 𝐴 |
| 23 |
|
cle |
⊢ ≤ |
| 24 |
20
|
cv |
⊢ 𝑦 |
| 25 |
5 24 23
|
wbr |
⊢ 0 ≤ 𝑦 |
| 26 |
22 25
|
wa |
⊢ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦 ) |
| 27 |
26 24 5
|
cif |
⊢ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) |
| 28 |
20 19 27
|
csb |
⊢ ⦋ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) |
| 29 |
2 15 28
|
cmpt |
⊢ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) |
| 30 |
29 14
|
cfv |
⊢ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) |
| 31 |
12 30 13
|
co |
⊢ ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) ) |
| 32 |
8 31 4
|
csu |
⊢ Σ 𝑘 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) ) |
| 33 |
3 32
|
wceq |
⊢ ∫ 𝐴 𝐵 d 𝑥 = Σ 𝑘 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) ) |