| Step | Hyp | Ref | Expression | 
						
							| 0 |  | citg1 | ⊢ ∫1 | 
						
							| 1 |  | vf | ⊢ 𝑓 | 
						
							| 2 |  | vg | ⊢ 𝑔 | 
						
							| 3 |  | cmbf | ⊢ MblFn | 
						
							| 4 | 2 | cv | ⊢ 𝑔 | 
						
							| 5 |  | cr | ⊢ ℝ | 
						
							| 6 | 5 5 4 | wf | ⊢ 𝑔 : ℝ ⟶ ℝ | 
						
							| 7 | 4 | crn | ⊢ ran  𝑔 | 
						
							| 8 |  | cfn | ⊢ Fin | 
						
							| 9 | 7 8 | wcel | ⊢ ran  𝑔  ∈  Fin | 
						
							| 10 |  | cvol | ⊢ vol | 
						
							| 11 | 4 | ccnv | ⊢ ◡ 𝑔 | 
						
							| 12 |  | cc0 | ⊢ 0 | 
						
							| 13 | 12 | csn | ⊢ { 0 } | 
						
							| 14 | 5 13 | cdif | ⊢ ( ℝ  ∖  { 0 } ) | 
						
							| 15 | 11 14 | cima | ⊢ ( ◡ 𝑔  “  ( ℝ  ∖  { 0 } ) ) | 
						
							| 16 | 15 10 | cfv | ⊢ ( vol ‘ ( ◡ 𝑔  “  ( ℝ  ∖  { 0 } ) ) ) | 
						
							| 17 | 16 5 | wcel | ⊢ ( vol ‘ ( ◡ 𝑔  “  ( ℝ  ∖  { 0 } ) ) )  ∈  ℝ | 
						
							| 18 | 6 9 17 | w3a | ⊢ ( 𝑔 : ℝ ⟶ ℝ  ∧  ran  𝑔  ∈  Fin  ∧  ( vol ‘ ( ◡ 𝑔  “  ( ℝ  ∖  { 0 } ) ) )  ∈  ℝ ) | 
						
							| 19 | 18 2 3 | crab | ⊢ { 𝑔  ∈  MblFn  ∣  ( 𝑔 : ℝ ⟶ ℝ  ∧  ran  𝑔  ∈  Fin  ∧  ( vol ‘ ( ◡ 𝑔  “  ( ℝ  ∖  { 0 } ) ) )  ∈  ℝ ) } | 
						
							| 20 |  | vx | ⊢ 𝑥 | 
						
							| 21 | 1 | cv | ⊢ 𝑓 | 
						
							| 22 | 21 | crn | ⊢ ran  𝑓 | 
						
							| 23 | 22 13 | cdif | ⊢ ( ran  𝑓  ∖  { 0 } ) | 
						
							| 24 | 20 | cv | ⊢ 𝑥 | 
						
							| 25 |  | cmul | ⊢  · | 
						
							| 26 | 21 | ccnv | ⊢ ◡ 𝑓 | 
						
							| 27 | 24 | csn | ⊢ { 𝑥 } | 
						
							| 28 | 26 27 | cima | ⊢ ( ◡ 𝑓  “  { 𝑥 } ) | 
						
							| 29 | 28 10 | cfv | ⊢ ( vol ‘ ( ◡ 𝑓  “  { 𝑥 } ) ) | 
						
							| 30 | 24 29 25 | co | ⊢ ( 𝑥  ·  ( vol ‘ ( ◡ 𝑓  “  { 𝑥 } ) ) ) | 
						
							| 31 | 23 30 20 | csu | ⊢ Σ 𝑥  ∈  ( ran  𝑓  ∖  { 0 } ) ( 𝑥  ·  ( vol ‘ ( ◡ 𝑓  “  { 𝑥 } ) ) ) | 
						
							| 32 | 1 19 31 | cmpt | ⊢ ( 𝑓  ∈  { 𝑔  ∈  MblFn  ∣  ( 𝑔 : ℝ ⟶ ℝ  ∧  ran  𝑔  ∈  Fin  ∧  ( vol ‘ ( ◡ 𝑔  “  ( ℝ  ∖  { 0 } ) ) )  ∈  ℝ ) }  ↦  Σ 𝑥  ∈  ( ran  𝑓  ∖  { 0 } ) ( 𝑥  ·  ( vol ‘ ( ◡ 𝑓  “  { 𝑥 } ) ) ) ) | 
						
							| 33 | 0 32 | wceq | ⊢ ∫1  =  ( 𝑓  ∈  { 𝑔  ∈  MblFn  ∣  ( 𝑔 : ℝ ⟶ ℝ  ∧  ran  𝑔  ∈  Fin  ∧  ( vol ‘ ( ◡ 𝑔  “  ( ℝ  ∖  { 0 } ) ) )  ∈  ℝ ) }  ↦  Σ 𝑥  ∈  ( ran  𝑓  ∖  { 0 } ) ( 𝑥  ·  ( vol ‘ ( ◡ 𝑓  “  { 𝑥 } ) ) ) ) |