| Step | Hyp | Ref | Expression | 
						
							| 0 |  | citg2 | ⊢ ∫2 | 
						
							| 1 |  | vf | ⊢ 𝑓 | 
						
							| 2 |  | cc0 | ⊢ 0 | 
						
							| 3 |  | cicc | ⊢ [,] | 
						
							| 4 |  | cpnf | ⊢ +∞ | 
						
							| 5 | 2 4 3 | co | ⊢ ( 0 [,] +∞ ) | 
						
							| 6 |  | cmap | ⊢  ↑m | 
						
							| 7 |  | cr | ⊢ ℝ | 
						
							| 8 | 5 7 6 | co | ⊢ ( ( 0 [,] +∞ )  ↑m  ℝ ) | 
						
							| 9 |  | vx | ⊢ 𝑥 | 
						
							| 10 |  | vg | ⊢ 𝑔 | 
						
							| 11 |  | citg1 | ⊢ ∫1 | 
						
							| 12 | 11 | cdm | ⊢ dom  ∫1 | 
						
							| 13 | 10 | cv | ⊢ 𝑔 | 
						
							| 14 |  | cle | ⊢  ≤ | 
						
							| 15 | 14 | cofr | ⊢  ∘r   ≤ | 
						
							| 16 | 1 | cv | ⊢ 𝑓 | 
						
							| 17 | 13 16 15 | wbr | ⊢ 𝑔  ∘r   ≤  𝑓 | 
						
							| 18 | 9 | cv | ⊢ 𝑥 | 
						
							| 19 | 13 11 | cfv | ⊢ ( ∫1 ‘ 𝑔 ) | 
						
							| 20 | 18 19 | wceq | ⊢ 𝑥  =  ( ∫1 ‘ 𝑔 ) | 
						
							| 21 | 17 20 | wa | ⊢ ( 𝑔  ∘r   ≤  𝑓  ∧  𝑥  =  ( ∫1 ‘ 𝑔 ) ) | 
						
							| 22 | 21 10 12 | wrex | ⊢ ∃ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝑓  ∧  𝑥  =  ( ∫1 ‘ 𝑔 ) ) | 
						
							| 23 | 22 9 | cab | ⊢ { 𝑥  ∣  ∃ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝑓  ∧  𝑥  =  ( ∫1 ‘ 𝑔 ) ) } | 
						
							| 24 |  | cxr | ⊢ ℝ* | 
						
							| 25 |  | clt | ⊢  < | 
						
							| 26 | 23 24 25 | csup | ⊢ sup ( { 𝑥  ∣  ∃ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝑓  ∧  𝑥  =  ( ∫1 ‘ 𝑔 ) ) } ,  ℝ* ,   <  ) | 
						
							| 27 | 1 8 26 | cmpt | ⊢ ( 𝑓  ∈  ( ( 0 [,] +∞ )  ↑m  ℝ )  ↦  sup ( { 𝑥  ∣  ∃ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝑓  ∧  𝑥  =  ( ∫1 ‘ 𝑔 ) ) } ,  ℝ* ,   <  ) ) | 
						
							| 28 | 0 27 | wceq | ⊢ ∫2  =  ( 𝑓  ∈  ( ( 0 [,] +∞ )  ↑m  ℝ )  ↦  sup ( { 𝑥  ∣  ∃ 𝑔  ∈  dom  ∫1 ( 𝑔  ∘r   ≤  𝑓  ∧  𝑥  =  ( ∫1 ‘ 𝑔 ) ) } ,  ℝ* ,   <  ) ) |