Step |
Hyp |
Ref |
Expression |
0 |
|
citg2 |
⊢ ∫2 |
1 |
|
vf |
⊢ 𝑓 |
2 |
|
cc0 |
⊢ 0 |
3 |
|
cicc |
⊢ [,] |
4 |
|
cpnf |
⊢ +∞ |
5 |
2 4 3
|
co |
⊢ ( 0 [,] +∞ ) |
6 |
|
cmap |
⊢ ↑m |
7 |
|
cr |
⊢ ℝ |
8 |
5 7 6
|
co |
⊢ ( ( 0 [,] +∞ ) ↑m ℝ ) |
9 |
|
vx |
⊢ 𝑥 |
10 |
|
vg |
⊢ 𝑔 |
11 |
|
citg1 |
⊢ ∫1 |
12 |
11
|
cdm |
⊢ dom ∫1 |
13 |
10
|
cv |
⊢ 𝑔 |
14 |
|
cle |
⊢ ≤ |
15 |
14
|
cofr |
⊢ ∘r ≤ |
16 |
1
|
cv |
⊢ 𝑓 |
17 |
13 16 15
|
wbr |
⊢ 𝑔 ∘r ≤ 𝑓 |
18 |
9
|
cv |
⊢ 𝑥 |
19 |
13 11
|
cfv |
⊢ ( ∫1 ‘ 𝑔 ) |
20 |
18 19
|
wceq |
⊢ 𝑥 = ( ∫1 ‘ 𝑔 ) |
21 |
17 20
|
wa |
⊢ ( 𝑔 ∘r ≤ 𝑓 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) |
22 |
21 10 12
|
wrex |
⊢ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝑓 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) |
23 |
22 9
|
cab |
⊢ { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝑓 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } |
24 |
|
cxr |
⊢ ℝ* |
25 |
|
clt |
⊢ < |
26 |
23 24 25
|
csup |
⊢ sup ( { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝑓 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } , ℝ* , < ) |
27 |
1 8 26
|
cmpt |
⊢ ( 𝑓 ∈ ( ( 0 [,] +∞ ) ↑m ℝ ) ↦ sup ( { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝑓 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } , ℝ* , < ) ) |
28 |
0 27
|
wceq |
⊢ ∫2 = ( 𝑓 ∈ ( ( 0 [,] +∞ ) ↑m ℝ ) ↦ sup ( { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝑓 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } , ℝ* , < ) ) |