Metamath Proof Explorer


Definition df-itg2

Description: Define the Lebesgue integral for nonnegative functions. A nonnegative function's integral is the supremum of the integrals of all simple functions that are less than the input function. Note that this may be +oo for functions that take the value +oo on a set of positive measure or functions that are bounded below by a positive number on a set of infinite measure. (Contributed by Mario Carneiro, 28-Jun-2014)

Ref Expression
Assertion df-itg2 2 = ( 𝑓 ∈ ( ( 0 [,] +∞ ) ↑m ℝ ) ↦ sup ( { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔r𝑓𝑥 = ( ∫1𝑔 ) ) } , ℝ* , < ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 citg2 2
1 vf 𝑓
2 cc0 0
3 cicc [,]
4 cpnf +∞
5 2 4 3 co ( 0 [,] +∞ )
6 cmap m
7 cr
8 5 7 6 co ( ( 0 [,] +∞ ) ↑m ℝ )
9 vx 𝑥
10 vg 𝑔
11 citg1 1
12 11 cdm dom ∫1
13 10 cv 𝑔
14 cle
15 14 cofr r
16 1 cv 𝑓
17 13 16 15 wbr 𝑔r𝑓
18 9 cv 𝑥
19 13 11 cfv ( ∫1𝑔 )
20 18 19 wceq 𝑥 = ( ∫1𝑔 )
21 17 20 wa ( 𝑔r𝑓𝑥 = ( ∫1𝑔 ) )
22 21 10 12 wrex 𝑔 ∈ dom ∫1 ( 𝑔r𝑓𝑥 = ( ∫1𝑔 ) )
23 22 9 cab { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔r𝑓𝑥 = ( ∫1𝑔 ) ) }
24 cxr *
25 clt <
26 23 24 25 csup sup ( { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔r𝑓𝑥 = ( ∫1𝑔 ) ) } , ℝ* , < )
27 1 8 26 cmpt ( 𝑓 ∈ ( ( 0 [,] +∞ ) ↑m ℝ ) ↦ sup ( { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔r𝑓𝑥 = ( ∫1𝑔 ) ) } , ℝ* , < ) )
28 0 27 wceq 2 = ( 𝑓 ∈ ( ( 0 [,] +∞ ) ↑m ℝ ) ↦ sup ( { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔r𝑓𝑥 = ( ∫1𝑔 ) ) } , ℝ* , < ) )