Description: Define poset join. (Contributed by NM, 12-Sep-2011) (Revised by Mario Carneiro, 3-Nov-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-join | ⊢ join = ( 𝑝 ∈ V ↦ { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ { 𝑥 , 𝑦 } ( lub ‘ 𝑝 ) 𝑧 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cjn | ⊢ join | |
| 1 | vp | ⊢ 𝑝 | |
| 2 | cvv | ⊢ V | |
| 3 | vx | ⊢ 𝑥 | |
| 4 | vy | ⊢ 𝑦 | |
| 5 | vz | ⊢ 𝑧 | |
| 6 | 3 | cv | ⊢ 𝑥 |
| 7 | 4 | cv | ⊢ 𝑦 |
| 8 | 6 7 | cpr | ⊢ { 𝑥 , 𝑦 } |
| 9 | club | ⊢ lub | |
| 10 | 1 | cv | ⊢ 𝑝 |
| 11 | 10 9 | cfv | ⊢ ( lub ‘ 𝑝 ) |
| 12 | 5 | cv | ⊢ 𝑧 |
| 13 | 8 12 11 | wbr | ⊢ { 𝑥 , 𝑦 } ( lub ‘ 𝑝 ) 𝑧 |
| 14 | 13 3 4 5 | coprab | ⊢ { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ { 𝑥 , 𝑦 } ( lub ‘ 𝑝 ) 𝑧 } |
| 15 | 1 2 14 | cmpt | ⊢ ( 𝑝 ∈ V ↦ { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ { 𝑥 , 𝑦 } ( lub ‘ 𝑝 ) 𝑧 } ) |
| 16 | 0 15 | wceq | ⊢ join = ( 𝑝 ∈ V ↦ { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ { 𝑥 , 𝑦 } ( lub ‘ 𝑝 ) 𝑧 } ) |