Database
BASIC TOPOLOGY
Topology
Compactly generated spaces
df-kgen
Metamath Proof Explorer
Description: Define the "compact generator", the functor from topological spaces to
compactly generated spaces. Also known as the k-ification operation. A
set is k-open, i.e. x e. ( kGen j ) , iff the preimage of x
is open in all compact Hausdorff spaces. (Contributed by Mario
Carneiro , 20-Mar-2015)
Ref
Expression
Assertion
df-kgen
⊢ 𝑘Gen = ( 𝑗 ∈ Top ↦ { 𝑥 ∈ 𝒫 ∪ 𝑗 ∣ ∀ 𝑘 ∈ 𝒫 ∪ 𝑗 ( ( 𝑗 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝑗 ↾t 𝑘 ) ) } )
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
ckgen
⊢ 𝑘Gen
1
vj
⊢ 𝑗
2
ctop
⊢ Top
3
vx
⊢ 𝑥
4
1
cv
⊢ 𝑗
5
4
cuni
⊢ ∪ 𝑗
6
5
cpw
⊢ 𝒫 ∪ 𝑗
7
vk
⊢ 𝑘
8
crest
⊢ ↾t
9
7
cv
⊢ 𝑘
10
4 9 8
co
⊢ ( 𝑗 ↾t 𝑘 )
11
ccmp
⊢ Comp
12
10 11
wcel
⊢ ( 𝑗 ↾t 𝑘 ) ∈ Comp
13
3
cv
⊢ 𝑥
14
13 9
cin
⊢ ( 𝑥 ∩ 𝑘 )
15
14 10
wcel
⊢ ( 𝑥 ∩ 𝑘 ) ∈ ( 𝑗 ↾t 𝑘 )
16
12 15
wi
⊢ ( ( 𝑗 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝑗 ↾t 𝑘 ) )
17
16 7 6
wral
⊢ ∀ 𝑘 ∈ 𝒫 ∪ 𝑗 ( ( 𝑗 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝑗 ↾t 𝑘 ) )
18
17 3 6
crab
⊢ { 𝑥 ∈ 𝒫 ∪ 𝑗 ∣ ∀ 𝑘 ∈ 𝒫 ∪ 𝑗 ( ( 𝑗 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝑗 ↾t 𝑘 ) ) }
19
1 2 18
cmpt
⊢ ( 𝑗 ∈ Top ↦ { 𝑥 ∈ 𝒫 ∪ 𝑗 ∣ ∀ 𝑘 ∈ 𝒫 ∪ 𝑗 ( ( 𝑗 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝑗 ↾t 𝑘 ) ) } )
20
0 19
wceq
⊢ 𝑘Gen = ( 𝑗 ∈ Top ↦ { 𝑥 ∈ 𝒫 ∪ 𝑗 ∣ ∀ 𝑘 ∈ 𝒫 ∪ 𝑗 ( ( 𝑗 ↾t 𝑘 ) ∈ Comp → ( 𝑥 ∩ 𝑘 ) ∈ ( 𝑗 ↾t 𝑘 ) ) } )