Step |
Hyp |
Ref |
Expression |
0 |
|
ckgen |
β’ πGen |
1 |
|
vj |
β’ π |
2 |
|
ctop |
β’ Top |
3 |
|
vx |
β’ π₯ |
4 |
1
|
cv |
β’ π |
5 |
4
|
cuni |
β’ βͺ π |
6 |
5
|
cpw |
β’ π« βͺ π |
7 |
|
vk |
β’ π |
8 |
|
crest |
β’ βΎt |
9 |
7
|
cv |
β’ π |
10 |
4 9 8
|
co |
β’ ( π βΎt π ) |
11 |
|
ccmp |
β’ Comp |
12 |
10 11
|
wcel |
β’ ( π βΎt π ) β Comp |
13 |
3
|
cv |
β’ π₯ |
14 |
13 9
|
cin |
β’ ( π₯ β© π ) |
15 |
14 10
|
wcel |
β’ ( π₯ β© π ) β ( π βΎt π ) |
16 |
12 15
|
wi |
β’ ( ( π βΎt π ) β Comp β ( π₯ β© π ) β ( π βΎt π ) ) |
17 |
16 7 6
|
wral |
β’ β π β π« βͺ π ( ( π βΎt π ) β Comp β ( π₯ β© π ) β ( π βΎt π ) ) |
18 |
17 3 6
|
crab |
β’ { π₯ β π« βͺ π β£ β π β π« βͺ π ( ( π βΎt π ) β Comp β ( π₯ β© π ) β ( π βΎt π ) ) } |
19 |
1 2 18
|
cmpt |
β’ ( π β Top β¦ { π₯ β π« βͺ π β£ β π β π« βͺ π ( ( π βΎt π ) β Comp β ( π₯ β© π ) β ( π βΎt π ) ) } ) |
20 |
0 19
|
wceq |
β’ πGen = ( π β Top β¦ { π₯ β π« βͺ π β£ β π β π« βͺ π ( ( π βΎt π ) β Comp β ( π₯ β© π ) β ( π βΎt π ) ) } ) |