Step |
Hyp |
Ref |
Expression |
0 |
|
claut |
⊢ LAut |
1 |
|
vk |
⊢ 𝑘 |
2 |
|
cvv |
⊢ V |
3 |
|
vf |
⊢ 𝑓 |
4 |
3
|
cv |
⊢ 𝑓 |
5 |
|
cbs |
⊢ Base |
6 |
1
|
cv |
⊢ 𝑘 |
7 |
6 5
|
cfv |
⊢ ( Base ‘ 𝑘 ) |
8 |
7 7 4
|
wf1o |
⊢ 𝑓 : ( Base ‘ 𝑘 ) –1-1-onto→ ( Base ‘ 𝑘 ) |
9 |
|
vx |
⊢ 𝑥 |
10 |
|
vy |
⊢ 𝑦 |
11 |
9
|
cv |
⊢ 𝑥 |
12 |
|
cple |
⊢ le |
13 |
6 12
|
cfv |
⊢ ( le ‘ 𝑘 ) |
14 |
10
|
cv |
⊢ 𝑦 |
15 |
11 14 13
|
wbr |
⊢ 𝑥 ( le ‘ 𝑘 ) 𝑦 |
16 |
11 4
|
cfv |
⊢ ( 𝑓 ‘ 𝑥 ) |
17 |
14 4
|
cfv |
⊢ ( 𝑓 ‘ 𝑦 ) |
18 |
16 17 13
|
wbr |
⊢ ( 𝑓 ‘ 𝑥 ) ( le ‘ 𝑘 ) ( 𝑓 ‘ 𝑦 ) |
19 |
15 18
|
wb |
⊢ ( 𝑥 ( le ‘ 𝑘 ) 𝑦 ↔ ( 𝑓 ‘ 𝑥 ) ( le ‘ 𝑘 ) ( 𝑓 ‘ 𝑦 ) ) |
20 |
19 10 7
|
wral |
⊢ ∀ 𝑦 ∈ ( Base ‘ 𝑘 ) ( 𝑥 ( le ‘ 𝑘 ) 𝑦 ↔ ( 𝑓 ‘ 𝑥 ) ( le ‘ 𝑘 ) ( 𝑓 ‘ 𝑦 ) ) |
21 |
20 9 7
|
wral |
⊢ ∀ 𝑥 ∈ ( Base ‘ 𝑘 ) ∀ 𝑦 ∈ ( Base ‘ 𝑘 ) ( 𝑥 ( le ‘ 𝑘 ) 𝑦 ↔ ( 𝑓 ‘ 𝑥 ) ( le ‘ 𝑘 ) ( 𝑓 ‘ 𝑦 ) ) |
22 |
8 21
|
wa |
⊢ ( 𝑓 : ( Base ‘ 𝑘 ) –1-1-onto→ ( Base ‘ 𝑘 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑘 ) ∀ 𝑦 ∈ ( Base ‘ 𝑘 ) ( 𝑥 ( le ‘ 𝑘 ) 𝑦 ↔ ( 𝑓 ‘ 𝑥 ) ( le ‘ 𝑘 ) ( 𝑓 ‘ 𝑦 ) ) ) |
23 |
22 3
|
cab |
⊢ { 𝑓 ∣ ( 𝑓 : ( Base ‘ 𝑘 ) –1-1-onto→ ( Base ‘ 𝑘 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑘 ) ∀ 𝑦 ∈ ( Base ‘ 𝑘 ) ( 𝑥 ( le ‘ 𝑘 ) 𝑦 ↔ ( 𝑓 ‘ 𝑥 ) ( le ‘ 𝑘 ) ( 𝑓 ‘ 𝑦 ) ) ) } |
24 |
1 2 23
|
cmpt |
⊢ ( 𝑘 ∈ V ↦ { 𝑓 ∣ ( 𝑓 : ( Base ‘ 𝑘 ) –1-1-onto→ ( Base ‘ 𝑘 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑘 ) ∀ 𝑦 ∈ ( Base ‘ 𝑘 ) ( 𝑥 ( le ‘ 𝑘 ) 𝑦 ↔ ( 𝑓 ‘ 𝑥 ) ( le ‘ 𝑘 ) ( 𝑓 ‘ 𝑦 ) ) ) } ) |
25 |
0 24
|
wceq |
⊢ LAut = ( 𝑘 ∈ V ↦ { 𝑓 ∣ ( 𝑓 : ( Base ‘ 𝑘 ) –1-1-onto→ ( Base ‘ 𝑘 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑘 ) ∀ 𝑦 ∈ ( Base ‘ 𝑘 ) ( 𝑥 ( le ‘ 𝑘 ) 𝑦 ↔ ( 𝑓 ‘ 𝑥 ) ( le ‘ 𝑘 ) ( 𝑓 ‘ 𝑦 ) ) ) } ) |