Metamath Proof Explorer


Definition df-lbs

Description: Define the set of bases to a left module or left vector space. (Contributed by Mario Carneiro, 24-Jun-2014)

Ref Expression
Assertion df-lbs LBasis = ( 𝑤 ∈ V ↦ { 𝑏 ∈ 𝒫 ( Base ‘ 𝑤 ) ∣ [ ( LSpan ‘ 𝑤 ) / 𝑛 ] [ ( Scalar ‘ 𝑤 ) / 𝑠 ] ( ( 𝑛𝑏 ) = ( Base ‘ 𝑤 ) ∧ ∀ 𝑥𝑏𝑦 ∈ ( ( Base ‘ 𝑠 ) ∖ { ( 0g𝑠 ) } ) ¬ ( 𝑦 ( ·𝑠𝑤 ) 𝑥 ) ∈ ( 𝑛 ‘ ( 𝑏 ∖ { 𝑥 } ) ) ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 clbs LBasis
1 vw 𝑤
2 cvv V
3 vb 𝑏
4 cbs Base
5 1 cv 𝑤
6 5 4 cfv ( Base ‘ 𝑤 )
7 6 cpw 𝒫 ( Base ‘ 𝑤 )
8 clspn LSpan
9 5 8 cfv ( LSpan ‘ 𝑤 )
10 vn 𝑛
11 csca Scalar
12 5 11 cfv ( Scalar ‘ 𝑤 )
13 vs 𝑠
14 10 cv 𝑛
15 3 cv 𝑏
16 15 14 cfv ( 𝑛𝑏 )
17 16 6 wceq ( 𝑛𝑏 ) = ( Base ‘ 𝑤 )
18 vx 𝑥
19 vy 𝑦
20 13 cv 𝑠
21 20 4 cfv ( Base ‘ 𝑠 )
22 c0g 0g
23 20 22 cfv ( 0g𝑠 )
24 23 csn { ( 0g𝑠 ) }
25 21 24 cdif ( ( Base ‘ 𝑠 ) ∖ { ( 0g𝑠 ) } )
26 19 cv 𝑦
27 cvsca ·𝑠
28 5 27 cfv ( ·𝑠𝑤 )
29 18 cv 𝑥
30 26 29 28 co ( 𝑦 ( ·𝑠𝑤 ) 𝑥 )
31 29 csn { 𝑥 }
32 15 31 cdif ( 𝑏 ∖ { 𝑥 } )
33 32 14 cfv ( 𝑛 ‘ ( 𝑏 ∖ { 𝑥 } ) )
34 30 33 wcel ( 𝑦 ( ·𝑠𝑤 ) 𝑥 ) ∈ ( 𝑛 ‘ ( 𝑏 ∖ { 𝑥 } ) )
35 34 wn ¬ ( 𝑦 ( ·𝑠𝑤 ) 𝑥 ) ∈ ( 𝑛 ‘ ( 𝑏 ∖ { 𝑥 } ) )
36 35 19 25 wral 𝑦 ∈ ( ( Base ‘ 𝑠 ) ∖ { ( 0g𝑠 ) } ) ¬ ( 𝑦 ( ·𝑠𝑤 ) 𝑥 ) ∈ ( 𝑛 ‘ ( 𝑏 ∖ { 𝑥 } ) )
37 36 18 15 wral 𝑥𝑏𝑦 ∈ ( ( Base ‘ 𝑠 ) ∖ { ( 0g𝑠 ) } ) ¬ ( 𝑦 ( ·𝑠𝑤 ) 𝑥 ) ∈ ( 𝑛 ‘ ( 𝑏 ∖ { 𝑥 } ) )
38 17 37 wa ( ( 𝑛𝑏 ) = ( Base ‘ 𝑤 ) ∧ ∀ 𝑥𝑏𝑦 ∈ ( ( Base ‘ 𝑠 ) ∖ { ( 0g𝑠 ) } ) ¬ ( 𝑦 ( ·𝑠𝑤 ) 𝑥 ) ∈ ( 𝑛 ‘ ( 𝑏 ∖ { 𝑥 } ) ) )
39 38 13 12 wsbc [ ( Scalar ‘ 𝑤 ) / 𝑠 ] ( ( 𝑛𝑏 ) = ( Base ‘ 𝑤 ) ∧ ∀ 𝑥𝑏𝑦 ∈ ( ( Base ‘ 𝑠 ) ∖ { ( 0g𝑠 ) } ) ¬ ( 𝑦 ( ·𝑠𝑤 ) 𝑥 ) ∈ ( 𝑛 ‘ ( 𝑏 ∖ { 𝑥 } ) ) )
40 39 10 9 wsbc [ ( LSpan ‘ 𝑤 ) / 𝑛 ] [ ( Scalar ‘ 𝑤 ) / 𝑠 ] ( ( 𝑛𝑏 ) = ( Base ‘ 𝑤 ) ∧ ∀ 𝑥𝑏𝑦 ∈ ( ( Base ‘ 𝑠 ) ∖ { ( 0g𝑠 ) } ) ¬ ( 𝑦 ( ·𝑠𝑤 ) 𝑥 ) ∈ ( 𝑛 ‘ ( 𝑏 ∖ { 𝑥 } ) ) )
41 40 3 7 crab { 𝑏 ∈ 𝒫 ( Base ‘ 𝑤 ) ∣ [ ( LSpan ‘ 𝑤 ) / 𝑛 ] [ ( Scalar ‘ 𝑤 ) / 𝑠 ] ( ( 𝑛𝑏 ) = ( Base ‘ 𝑤 ) ∧ ∀ 𝑥𝑏𝑦 ∈ ( ( Base ‘ 𝑠 ) ∖ { ( 0g𝑠 ) } ) ¬ ( 𝑦 ( ·𝑠𝑤 ) 𝑥 ) ∈ ( 𝑛 ‘ ( 𝑏 ∖ { 𝑥 } ) ) ) }
42 1 2 41 cmpt ( 𝑤 ∈ V ↦ { 𝑏 ∈ 𝒫 ( Base ‘ 𝑤 ) ∣ [ ( LSpan ‘ 𝑤 ) / 𝑛 ] [ ( Scalar ‘ 𝑤 ) / 𝑠 ] ( ( 𝑛𝑏 ) = ( Base ‘ 𝑤 ) ∧ ∀ 𝑥𝑏𝑦 ∈ ( ( Base ‘ 𝑠 ) ∖ { ( 0g𝑠 ) } ) ¬ ( 𝑦 ( ·𝑠𝑤 ) 𝑥 ) ∈ ( 𝑛 ‘ ( 𝑏 ∖ { 𝑥 } ) ) ) } )
43 0 42 wceq LBasis = ( 𝑤 ∈ V ↦ { 𝑏 ∈ 𝒫 ( Base ‘ 𝑤 ) ∣ [ ( LSpan ‘ 𝑤 ) / 𝑛 ] [ ( Scalar ‘ 𝑤 ) / 𝑠 ] ( ( 𝑛𝑏 ) = ( Base ‘ 𝑤 ) ∧ ∀ 𝑥𝑏𝑦 ∈ ( ( Base ‘ 𝑠 ) ∖ { ( 0g𝑠 ) } ) ¬ ( 𝑦 ( ·𝑠𝑤 ) 𝑥 ) ∈ ( 𝑛 ‘ ( 𝑏 ∖ { 𝑥 } ) ) ) } )