Metamath Proof Explorer


Definition df-lcm

Description: Define the lcm operator. For example, ( 6 lcm 9 ) = 1 8 ( ex-lcm ). (Contributed by Steve Rodriguez, 20-Jan-2020) (Revised by AV, 16-Sep-2020)

Ref Expression
Assertion df-lcm lcm = ( 𝑥 ∈ ℤ , 𝑦 ∈ ℤ ↦ if ( ( 𝑥 = 0 ∨ 𝑦 = 0 ) , 0 , inf ( { 𝑛 ∈ ℕ ∣ ( 𝑥𝑛𝑦𝑛 ) } , ℝ , < ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 clcm lcm
1 vx 𝑥
2 cz
3 vy 𝑦
4 1 cv 𝑥
5 cc0 0
6 4 5 wceq 𝑥 = 0
7 3 cv 𝑦
8 7 5 wceq 𝑦 = 0
9 6 8 wo ( 𝑥 = 0 ∨ 𝑦 = 0 )
10 vn 𝑛
11 cn
12 cdvds
13 10 cv 𝑛
14 4 13 12 wbr 𝑥𝑛
15 7 13 12 wbr 𝑦𝑛
16 14 15 wa ( 𝑥𝑛𝑦𝑛 )
17 16 10 11 crab { 𝑛 ∈ ℕ ∣ ( 𝑥𝑛𝑦𝑛 ) }
18 cr
19 clt <
20 17 18 19 cinf inf ( { 𝑛 ∈ ℕ ∣ ( 𝑥𝑛𝑦𝑛 ) } , ℝ , < )
21 9 5 20 cif if ( ( 𝑥 = 0 ∨ 𝑦 = 0 ) , 0 , inf ( { 𝑛 ∈ ℕ ∣ ( 𝑥𝑛𝑦𝑛 ) } , ℝ , < ) )
22 1 3 2 2 21 cmpo ( 𝑥 ∈ ℤ , 𝑦 ∈ ℤ ↦ if ( ( 𝑥 = 0 ∨ 𝑦 = 0 ) , 0 , inf ( { 𝑛 ∈ ℕ ∣ ( 𝑥𝑛𝑦𝑛 ) } , ℝ , < ) ) )
23 0 22 wceq lcm = ( 𝑥 ∈ ℤ , 𝑦 ∈ ℤ ↦ if ( ( 𝑥 = 0 ∨ 𝑦 = 0 ) , 0 , inf ( { 𝑛 ∈ ℕ ∣ ( 𝑥𝑛𝑦𝑛 ) } , ℝ , < ) ) )