Step |
Hyp |
Ref |
Expression |
0 |
|
clcm |
⊢ lcm |
1 |
|
vx |
⊢ 𝑥 |
2 |
|
cz |
⊢ ℤ |
3 |
|
vy |
⊢ 𝑦 |
4 |
1
|
cv |
⊢ 𝑥 |
5 |
|
cc0 |
⊢ 0 |
6 |
4 5
|
wceq |
⊢ 𝑥 = 0 |
7 |
3
|
cv |
⊢ 𝑦 |
8 |
7 5
|
wceq |
⊢ 𝑦 = 0 |
9 |
6 8
|
wo |
⊢ ( 𝑥 = 0 ∨ 𝑦 = 0 ) |
10 |
|
vn |
⊢ 𝑛 |
11 |
|
cn |
⊢ ℕ |
12 |
|
cdvds |
⊢ ∥ |
13 |
10
|
cv |
⊢ 𝑛 |
14 |
4 13 12
|
wbr |
⊢ 𝑥 ∥ 𝑛 |
15 |
7 13 12
|
wbr |
⊢ 𝑦 ∥ 𝑛 |
16 |
14 15
|
wa |
⊢ ( 𝑥 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛 ) |
17 |
16 10 11
|
crab |
⊢ { 𝑛 ∈ ℕ ∣ ( 𝑥 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛 ) } |
18 |
|
cr |
⊢ ℝ |
19 |
|
clt |
⊢ < |
20 |
17 18 19
|
cinf |
⊢ inf ( { 𝑛 ∈ ℕ ∣ ( 𝑥 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛 ) } , ℝ , < ) |
21 |
9 5 20
|
cif |
⊢ if ( ( 𝑥 = 0 ∨ 𝑦 = 0 ) , 0 , inf ( { 𝑛 ∈ ℕ ∣ ( 𝑥 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛 ) } , ℝ , < ) ) |
22 |
1 3 2 2 21
|
cmpo |
⊢ ( 𝑥 ∈ ℤ , 𝑦 ∈ ℤ ↦ if ( ( 𝑥 = 0 ∨ 𝑦 = 0 ) , 0 , inf ( { 𝑛 ∈ ℕ ∣ ( 𝑥 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛 ) } , ℝ , < ) ) ) |
23 |
0 22
|
wceq |
⊢ lcm = ( 𝑥 ∈ ℤ , 𝑦 ∈ ℤ ↦ if ( ( 𝑥 = 0 ∨ 𝑦 = 0 ) , 0 , inf ( { 𝑛 ∈ ℕ ∣ ( 𝑥 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛 ) } , ℝ , < ) ) ) |