Step |
Hyp |
Ref |
Expression |
0 |
|
cldgis |
⊢ ldgIdlSeq |
1 |
|
vr |
⊢ 𝑟 |
2 |
|
cvv |
⊢ V |
3 |
|
vi |
⊢ 𝑖 |
4 |
|
clidl |
⊢ LIdeal |
5 |
|
cpl1 |
⊢ Poly1 |
6 |
1
|
cv |
⊢ 𝑟 |
7 |
6 5
|
cfv |
⊢ ( Poly1 ‘ 𝑟 ) |
8 |
7 4
|
cfv |
⊢ ( LIdeal ‘ ( Poly1 ‘ 𝑟 ) ) |
9 |
|
vx |
⊢ 𝑥 |
10 |
|
cn0 |
⊢ ℕ0 |
11 |
|
vj |
⊢ 𝑗 |
12 |
|
vk |
⊢ 𝑘 |
13 |
3
|
cv |
⊢ 𝑖 |
14 |
|
cdg1 |
⊢ deg1 |
15 |
6 14
|
cfv |
⊢ ( deg1 ‘ 𝑟 ) |
16 |
12
|
cv |
⊢ 𝑘 |
17 |
16 15
|
cfv |
⊢ ( ( deg1 ‘ 𝑟 ) ‘ 𝑘 ) |
18 |
|
cle |
⊢ ≤ |
19 |
9
|
cv |
⊢ 𝑥 |
20 |
17 19 18
|
wbr |
⊢ ( ( deg1 ‘ 𝑟 ) ‘ 𝑘 ) ≤ 𝑥 |
21 |
11
|
cv |
⊢ 𝑗 |
22 |
|
cco1 |
⊢ coe1 |
23 |
16 22
|
cfv |
⊢ ( coe1 ‘ 𝑘 ) |
24 |
19 23
|
cfv |
⊢ ( ( coe1 ‘ 𝑘 ) ‘ 𝑥 ) |
25 |
21 24
|
wceq |
⊢ 𝑗 = ( ( coe1 ‘ 𝑘 ) ‘ 𝑥 ) |
26 |
20 25
|
wa |
⊢ ( ( ( deg1 ‘ 𝑟 ) ‘ 𝑘 ) ≤ 𝑥 ∧ 𝑗 = ( ( coe1 ‘ 𝑘 ) ‘ 𝑥 ) ) |
27 |
26 12 13
|
wrex |
⊢ ∃ 𝑘 ∈ 𝑖 ( ( ( deg1 ‘ 𝑟 ) ‘ 𝑘 ) ≤ 𝑥 ∧ 𝑗 = ( ( coe1 ‘ 𝑘 ) ‘ 𝑥 ) ) |
28 |
27 11
|
cab |
⊢ { 𝑗 ∣ ∃ 𝑘 ∈ 𝑖 ( ( ( deg1 ‘ 𝑟 ) ‘ 𝑘 ) ≤ 𝑥 ∧ 𝑗 = ( ( coe1 ‘ 𝑘 ) ‘ 𝑥 ) ) } |
29 |
9 10 28
|
cmpt |
⊢ ( 𝑥 ∈ ℕ0 ↦ { 𝑗 ∣ ∃ 𝑘 ∈ 𝑖 ( ( ( deg1 ‘ 𝑟 ) ‘ 𝑘 ) ≤ 𝑥 ∧ 𝑗 = ( ( coe1 ‘ 𝑘 ) ‘ 𝑥 ) ) } ) |
30 |
3 8 29
|
cmpt |
⊢ ( 𝑖 ∈ ( LIdeal ‘ ( Poly1 ‘ 𝑟 ) ) ↦ ( 𝑥 ∈ ℕ0 ↦ { 𝑗 ∣ ∃ 𝑘 ∈ 𝑖 ( ( ( deg1 ‘ 𝑟 ) ‘ 𝑘 ) ≤ 𝑥 ∧ 𝑗 = ( ( coe1 ‘ 𝑘 ) ‘ 𝑥 ) ) } ) ) |
31 |
1 2 30
|
cmpt |
⊢ ( 𝑟 ∈ V ↦ ( 𝑖 ∈ ( LIdeal ‘ ( Poly1 ‘ 𝑟 ) ) ↦ ( 𝑥 ∈ ℕ0 ↦ { 𝑗 ∣ ∃ 𝑘 ∈ 𝑖 ( ( ( deg1 ‘ 𝑟 ) ‘ 𝑘 ) ≤ 𝑥 ∧ 𝑗 = ( ( coe1 ‘ 𝑘 ) ‘ 𝑥 ) ) } ) ) ) |
32 |
0 31
|
wceq |
⊢ ldgIdlSeq = ( 𝑟 ∈ V ↦ ( 𝑖 ∈ ( LIdeal ‘ ( Poly1 ‘ 𝑟 ) ) ↦ ( 𝑥 ∈ ℕ0 ↦ { 𝑗 ∣ ∃ 𝑘 ∈ 𝑖 ( ( ( deg1 ‘ 𝑟 ) ‘ 𝑘 ) ≤ 𝑥 ∧ 𝑗 = ( ( coe1 ‘ 𝑘 ) ‘ 𝑥 ) ) } ) ) ) |