Step |
Hyp |
Ref |
Expression |
0 |
|
cldil |
⊢ LDil |
1 |
|
vk |
⊢ 𝑘 |
2 |
|
cvv |
⊢ V |
3 |
|
vw |
⊢ 𝑤 |
4 |
|
clh |
⊢ LHyp |
5 |
1
|
cv |
⊢ 𝑘 |
6 |
5 4
|
cfv |
⊢ ( LHyp ‘ 𝑘 ) |
7 |
|
vf |
⊢ 𝑓 |
8 |
|
claut |
⊢ LAut |
9 |
5 8
|
cfv |
⊢ ( LAut ‘ 𝑘 ) |
10 |
|
vx |
⊢ 𝑥 |
11 |
|
cbs |
⊢ Base |
12 |
5 11
|
cfv |
⊢ ( Base ‘ 𝑘 ) |
13 |
10
|
cv |
⊢ 𝑥 |
14 |
|
cple |
⊢ le |
15 |
5 14
|
cfv |
⊢ ( le ‘ 𝑘 ) |
16 |
3
|
cv |
⊢ 𝑤 |
17 |
13 16 15
|
wbr |
⊢ 𝑥 ( le ‘ 𝑘 ) 𝑤 |
18 |
7
|
cv |
⊢ 𝑓 |
19 |
13 18
|
cfv |
⊢ ( 𝑓 ‘ 𝑥 ) |
20 |
19 13
|
wceq |
⊢ ( 𝑓 ‘ 𝑥 ) = 𝑥 |
21 |
17 20
|
wi |
⊢ ( 𝑥 ( le ‘ 𝑘 ) 𝑤 → ( 𝑓 ‘ 𝑥 ) = 𝑥 ) |
22 |
21 10 12
|
wral |
⊢ ∀ 𝑥 ∈ ( Base ‘ 𝑘 ) ( 𝑥 ( le ‘ 𝑘 ) 𝑤 → ( 𝑓 ‘ 𝑥 ) = 𝑥 ) |
23 |
22 7 9
|
crab |
⊢ { 𝑓 ∈ ( LAut ‘ 𝑘 ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑘 ) ( 𝑥 ( le ‘ 𝑘 ) 𝑤 → ( 𝑓 ‘ 𝑥 ) = 𝑥 ) } |
24 |
3 6 23
|
cmpt |
⊢ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ { 𝑓 ∈ ( LAut ‘ 𝑘 ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑘 ) ( 𝑥 ( le ‘ 𝑘 ) 𝑤 → ( 𝑓 ‘ 𝑥 ) = 𝑥 ) } ) |
25 |
1 2 24
|
cmpt |
⊢ ( 𝑘 ∈ V ↦ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ { 𝑓 ∈ ( LAut ‘ 𝑘 ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑘 ) ( 𝑥 ( le ‘ 𝑘 ) 𝑤 → ( 𝑓 ‘ 𝑥 ) = 𝑥 ) } ) ) |
26 |
0 25
|
wceq |
⊢ LDil = ( 𝑘 ∈ V ↦ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ { 𝑓 ∈ ( LAut ‘ 𝑘 ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑘 ) ( 𝑥 ( le ‘ 𝑘 ) 𝑤 → ( 𝑓 ‘ 𝑥 ) = 𝑥 ) } ) ) |