Metamath Proof Explorer


Definition df-ldil

Description: Define set of all lattice dilations. Similar to definition of dilation in Crawley p. 111. (Contributed by NM, 11-May-2012)

Ref Expression
Assertion df-ldil LDil = ( 𝑘 ∈ V ↦ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ { 𝑓 ∈ ( LAut ‘ 𝑘 ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑘 ) ( 𝑥 ( le ‘ 𝑘 ) 𝑤 → ( 𝑓𝑥 ) = 𝑥 ) } ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cldil LDil
1 vk 𝑘
2 cvv V
3 vw 𝑤
4 clh LHyp
5 1 cv 𝑘
6 5 4 cfv ( LHyp ‘ 𝑘 )
7 vf 𝑓
8 claut LAut
9 5 8 cfv ( LAut ‘ 𝑘 )
10 vx 𝑥
11 cbs Base
12 5 11 cfv ( Base ‘ 𝑘 )
13 10 cv 𝑥
14 cple le
15 5 14 cfv ( le ‘ 𝑘 )
16 3 cv 𝑤
17 13 16 15 wbr 𝑥 ( le ‘ 𝑘 ) 𝑤
18 7 cv 𝑓
19 13 18 cfv ( 𝑓𝑥 )
20 19 13 wceq ( 𝑓𝑥 ) = 𝑥
21 17 20 wi ( 𝑥 ( le ‘ 𝑘 ) 𝑤 → ( 𝑓𝑥 ) = 𝑥 )
22 21 10 12 wral 𝑥 ∈ ( Base ‘ 𝑘 ) ( 𝑥 ( le ‘ 𝑘 ) 𝑤 → ( 𝑓𝑥 ) = 𝑥 )
23 22 7 9 crab { 𝑓 ∈ ( LAut ‘ 𝑘 ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑘 ) ( 𝑥 ( le ‘ 𝑘 ) 𝑤 → ( 𝑓𝑥 ) = 𝑥 ) }
24 3 6 23 cmpt ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ { 𝑓 ∈ ( LAut ‘ 𝑘 ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑘 ) ( 𝑥 ( le ‘ 𝑘 ) 𝑤 → ( 𝑓𝑥 ) = 𝑥 ) } )
25 1 2 24 cmpt ( 𝑘 ∈ V ↦ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ { 𝑓 ∈ ( LAut ‘ 𝑘 ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑘 ) ( 𝑥 ( le ‘ 𝑘 ) 𝑤 → ( 𝑓𝑥 ) = 𝑥 ) } ) )
26 0 25 wceq LDil = ( 𝑘 ∈ V ↦ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ { 𝑓 ∈ ( LAut ‘ 𝑘 ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑘 ) ( 𝑥 ( le ‘ 𝑘 ) 𝑤 → ( 𝑓𝑥 ) = 𝑥 ) } ) )