Metamath Proof Explorer


Definition df-le

Description: Define 'less than or equal to' on the extended real subset of complex numbers. Theorem leloe relates it to 'less than' for reals. (Contributed by NM, 13-Oct-2005)

Ref Expression
Assertion df-le ≤ = ( ( ℝ* × ℝ* ) ∖ < )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cle
1 cxr *
2 1 1 cxp ( ℝ* × ℝ* )
3 clt <
4 3 ccnv <
5 2 4 cdif ( ( ℝ* × ℝ* ) ∖ < )
6 0 5 wceq ≤ = ( ( ℝ* × ℝ* ) ∖ < )