Metamath Proof Explorer


Definition df-leg

Description: Define the less-than relationship between geometric distance congruence classes. See legval . (Contributed by Thierry Arnoux, 21-Jun-2019)

Ref Expression
Assertion df-leg ≤G = ( 𝑔 ∈ V ↦ { ⟨ 𝑒 , 𝑓 ⟩ ∣ [ ( Base ‘ 𝑔 ) / 𝑝 ] [ ( dist ‘ 𝑔 ) / 𝑑 ] [ ( Itv ‘ 𝑔 ) / 𝑖 ]𝑥𝑝𝑦𝑝 ( 𝑓 = ( 𝑥 𝑑 𝑦 ) ∧ ∃ 𝑧𝑝 ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∧ 𝑒 = ( 𝑥 𝑑 𝑧 ) ) ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cleg ≤G
1 vg 𝑔
2 cvv V
3 ve 𝑒
4 vf 𝑓
5 cbs Base
6 1 cv 𝑔
7 6 5 cfv ( Base ‘ 𝑔 )
8 vp 𝑝
9 cds dist
10 6 9 cfv ( dist ‘ 𝑔 )
11 vd 𝑑
12 citv Itv
13 6 12 cfv ( Itv ‘ 𝑔 )
14 vi 𝑖
15 vx 𝑥
16 8 cv 𝑝
17 vy 𝑦
18 4 cv 𝑓
19 15 cv 𝑥
20 11 cv 𝑑
21 17 cv 𝑦
22 19 21 20 co ( 𝑥 𝑑 𝑦 )
23 18 22 wceq 𝑓 = ( 𝑥 𝑑 𝑦 )
24 vz 𝑧
25 24 cv 𝑧
26 14 cv 𝑖
27 19 21 26 co ( 𝑥 𝑖 𝑦 )
28 25 27 wcel 𝑧 ∈ ( 𝑥 𝑖 𝑦 )
29 3 cv 𝑒
30 19 25 20 co ( 𝑥 𝑑 𝑧 )
31 29 30 wceq 𝑒 = ( 𝑥 𝑑 𝑧 )
32 28 31 wa ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∧ 𝑒 = ( 𝑥 𝑑 𝑧 ) )
33 32 24 16 wrex 𝑧𝑝 ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∧ 𝑒 = ( 𝑥 𝑑 𝑧 ) )
34 23 33 wa ( 𝑓 = ( 𝑥 𝑑 𝑦 ) ∧ ∃ 𝑧𝑝 ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∧ 𝑒 = ( 𝑥 𝑑 𝑧 ) ) )
35 34 17 16 wrex 𝑦𝑝 ( 𝑓 = ( 𝑥 𝑑 𝑦 ) ∧ ∃ 𝑧𝑝 ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∧ 𝑒 = ( 𝑥 𝑑 𝑧 ) ) )
36 35 15 16 wrex 𝑥𝑝𝑦𝑝 ( 𝑓 = ( 𝑥 𝑑 𝑦 ) ∧ ∃ 𝑧𝑝 ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∧ 𝑒 = ( 𝑥 𝑑 𝑧 ) ) )
37 36 14 13 wsbc [ ( Itv ‘ 𝑔 ) / 𝑖 ]𝑥𝑝𝑦𝑝 ( 𝑓 = ( 𝑥 𝑑 𝑦 ) ∧ ∃ 𝑧𝑝 ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∧ 𝑒 = ( 𝑥 𝑑 𝑧 ) ) )
38 37 11 10 wsbc [ ( dist ‘ 𝑔 ) / 𝑑 ] [ ( Itv ‘ 𝑔 ) / 𝑖 ]𝑥𝑝𝑦𝑝 ( 𝑓 = ( 𝑥 𝑑 𝑦 ) ∧ ∃ 𝑧𝑝 ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∧ 𝑒 = ( 𝑥 𝑑 𝑧 ) ) )
39 38 8 7 wsbc [ ( Base ‘ 𝑔 ) / 𝑝 ] [ ( dist ‘ 𝑔 ) / 𝑑 ] [ ( Itv ‘ 𝑔 ) / 𝑖 ]𝑥𝑝𝑦𝑝 ( 𝑓 = ( 𝑥 𝑑 𝑦 ) ∧ ∃ 𝑧𝑝 ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∧ 𝑒 = ( 𝑥 𝑑 𝑧 ) ) )
40 39 3 4 copab { ⟨ 𝑒 , 𝑓 ⟩ ∣ [ ( Base ‘ 𝑔 ) / 𝑝 ] [ ( dist ‘ 𝑔 ) / 𝑑 ] [ ( Itv ‘ 𝑔 ) / 𝑖 ]𝑥𝑝𝑦𝑝 ( 𝑓 = ( 𝑥 𝑑 𝑦 ) ∧ ∃ 𝑧𝑝 ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∧ 𝑒 = ( 𝑥 𝑑 𝑧 ) ) ) }
41 1 2 40 cmpt ( 𝑔 ∈ V ↦ { ⟨ 𝑒 , 𝑓 ⟩ ∣ [ ( Base ‘ 𝑔 ) / 𝑝 ] [ ( dist ‘ 𝑔 ) / 𝑑 ] [ ( Itv ‘ 𝑔 ) / 𝑖 ]𝑥𝑝𝑦𝑝 ( 𝑓 = ( 𝑥 𝑑 𝑦 ) ∧ ∃ 𝑧𝑝 ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∧ 𝑒 = ( 𝑥 𝑑 𝑧 ) ) ) } )
42 0 41 wceq ≤G = ( 𝑔 ∈ V ↦ { ⟨ 𝑒 , 𝑓 ⟩ ∣ [ ( Base ‘ 𝑔 ) / 𝑝 ] [ ( dist ‘ 𝑔 ) / 𝑑 ] [ ( Itv ‘ 𝑔 ) / 𝑖 ]𝑥𝑝𝑦𝑝 ( 𝑓 = ( 𝑥 𝑑 𝑦 ) ∧ ∃ 𝑧𝑝 ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∧ 𝑒 = ( 𝑥 𝑑 𝑧 ) ) ) } )