Step |
Hyp |
Ref |
Expression |
0 |
|
cleg |
⊢ ≤G |
1 |
|
vg |
⊢ 𝑔 |
2 |
|
cvv |
⊢ V |
3 |
|
ve |
⊢ 𝑒 |
4 |
|
vf |
⊢ 𝑓 |
5 |
|
cbs |
⊢ Base |
6 |
1
|
cv |
⊢ 𝑔 |
7 |
6 5
|
cfv |
⊢ ( Base ‘ 𝑔 ) |
8 |
|
vp |
⊢ 𝑝 |
9 |
|
cds |
⊢ dist |
10 |
6 9
|
cfv |
⊢ ( dist ‘ 𝑔 ) |
11 |
|
vd |
⊢ 𝑑 |
12 |
|
citv |
⊢ Itv |
13 |
6 12
|
cfv |
⊢ ( Itv ‘ 𝑔 ) |
14 |
|
vi |
⊢ 𝑖 |
15 |
|
vx |
⊢ 𝑥 |
16 |
8
|
cv |
⊢ 𝑝 |
17 |
|
vy |
⊢ 𝑦 |
18 |
4
|
cv |
⊢ 𝑓 |
19 |
15
|
cv |
⊢ 𝑥 |
20 |
11
|
cv |
⊢ 𝑑 |
21 |
17
|
cv |
⊢ 𝑦 |
22 |
19 21 20
|
co |
⊢ ( 𝑥 𝑑 𝑦 ) |
23 |
18 22
|
wceq |
⊢ 𝑓 = ( 𝑥 𝑑 𝑦 ) |
24 |
|
vz |
⊢ 𝑧 |
25 |
24
|
cv |
⊢ 𝑧 |
26 |
14
|
cv |
⊢ 𝑖 |
27 |
19 21 26
|
co |
⊢ ( 𝑥 𝑖 𝑦 ) |
28 |
25 27
|
wcel |
⊢ 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) |
29 |
3
|
cv |
⊢ 𝑒 |
30 |
19 25 20
|
co |
⊢ ( 𝑥 𝑑 𝑧 ) |
31 |
29 30
|
wceq |
⊢ 𝑒 = ( 𝑥 𝑑 𝑧 ) |
32 |
28 31
|
wa |
⊢ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∧ 𝑒 = ( 𝑥 𝑑 𝑧 ) ) |
33 |
32 24 16
|
wrex |
⊢ ∃ 𝑧 ∈ 𝑝 ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∧ 𝑒 = ( 𝑥 𝑑 𝑧 ) ) |
34 |
23 33
|
wa |
⊢ ( 𝑓 = ( 𝑥 𝑑 𝑦 ) ∧ ∃ 𝑧 ∈ 𝑝 ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∧ 𝑒 = ( 𝑥 𝑑 𝑧 ) ) ) |
35 |
34 17 16
|
wrex |
⊢ ∃ 𝑦 ∈ 𝑝 ( 𝑓 = ( 𝑥 𝑑 𝑦 ) ∧ ∃ 𝑧 ∈ 𝑝 ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∧ 𝑒 = ( 𝑥 𝑑 𝑧 ) ) ) |
36 |
35 15 16
|
wrex |
⊢ ∃ 𝑥 ∈ 𝑝 ∃ 𝑦 ∈ 𝑝 ( 𝑓 = ( 𝑥 𝑑 𝑦 ) ∧ ∃ 𝑧 ∈ 𝑝 ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∧ 𝑒 = ( 𝑥 𝑑 𝑧 ) ) ) |
37 |
36 14 13
|
wsbc |
⊢ [ ( Itv ‘ 𝑔 ) / 𝑖 ] ∃ 𝑥 ∈ 𝑝 ∃ 𝑦 ∈ 𝑝 ( 𝑓 = ( 𝑥 𝑑 𝑦 ) ∧ ∃ 𝑧 ∈ 𝑝 ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∧ 𝑒 = ( 𝑥 𝑑 𝑧 ) ) ) |
38 |
37 11 10
|
wsbc |
⊢ [ ( dist ‘ 𝑔 ) / 𝑑 ] [ ( Itv ‘ 𝑔 ) / 𝑖 ] ∃ 𝑥 ∈ 𝑝 ∃ 𝑦 ∈ 𝑝 ( 𝑓 = ( 𝑥 𝑑 𝑦 ) ∧ ∃ 𝑧 ∈ 𝑝 ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∧ 𝑒 = ( 𝑥 𝑑 𝑧 ) ) ) |
39 |
38 8 7
|
wsbc |
⊢ [ ( Base ‘ 𝑔 ) / 𝑝 ] [ ( dist ‘ 𝑔 ) / 𝑑 ] [ ( Itv ‘ 𝑔 ) / 𝑖 ] ∃ 𝑥 ∈ 𝑝 ∃ 𝑦 ∈ 𝑝 ( 𝑓 = ( 𝑥 𝑑 𝑦 ) ∧ ∃ 𝑧 ∈ 𝑝 ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∧ 𝑒 = ( 𝑥 𝑑 𝑧 ) ) ) |
40 |
39 3 4
|
copab |
⊢ { 〈 𝑒 , 𝑓 〉 ∣ [ ( Base ‘ 𝑔 ) / 𝑝 ] [ ( dist ‘ 𝑔 ) / 𝑑 ] [ ( Itv ‘ 𝑔 ) / 𝑖 ] ∃ 𝑥 ∈ 𝑝 ∃ 𝑦 ∈ 𝑝 ( 𝑓 = ( 𝑥 𝑑 𝑦 ) ∧ ∃ 𝑧 ∈ 𝑝 ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∧ 𝑒 = ( 𝑥 𝑑 𝑧 ) ) ) } |
41 |
1 2 40
|
cmpt |
⊢ ( 𝑔 ∈ V ↦ { 〈 𝑒 , 𝑓 〉 ∣ [ ( Base ‘ 𝑔 ) / 𝑝 ] [ ( dist ‘ 𝑔 ) / 𝑑 ] [ ( Itv ‘ 𝑔 ) / 𝑖 ] ∃ 𝑥 ∈ 𝑝 ∃ 𝑦 ∈ 𝑝 ( 𝑓 = ( 𝑥 𝑑 𝑦 ) ∧ ∃ 𝑧 ∈ 𝑝 ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∧ 𝑒 = ( 𝑥 𝑑 𝑧 ) ) ) } ) |
42 |
0 41
|
wceq |
⊢ ≤G = ( 𝑔 ∈ V ↦ { 〈 𝑒 , 𝑓 〉 ∣ [ ( Base ‘ 𝑔 ) / 𝑝 ] [ ( dist ‘ 𝑔 ) / 𝑑 ] [ ( Itv ‘ 𝑔 ) / 𝑖 ] ∃ 𝑥 ∈ 𝑝 ∃ 𝑦 ∈ 𝑝 ( 𝑓 = ( 𝑥 𝑑 𝑦 ) ∧ ∃ 𝑧 ∈ 𝑝 ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∧ 𝑒 = ( 𝑥 𝑑 𝑧 ) ) ) } ) |