Metamath Proof Explorer


Definition df-lfig

Description: Define the class of finitely generated left modules. Finite generation of subspaces can be intepreted using ` |``s ` . (Contributed by Stefan O'Rear, 1-Jan-2015)

Ref Expression
Assertion df-lfig LFinGen = { 𝑤 ∈ LMod ∣ ( Base ‘ 𝑤 ) ∈ ( ( LSpan ‘ 𝑤 ) “ ( 𝒫 ( Base ‘ 𝑤 ) ∩ Fin ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 clfig LFinGen
1 vw 𝑤
2 clmod LMod
3 cbs Base
4 1 cv 𝑤
5 4 3 cfv ( Base ‘ 𝑤 )
6 clspn LSpan
7 4 6 cfv ( LSpan ‘ 𝑤 )
8 5 cpw 𝒫 ( Base ‘ 𝑤 )
9 cfn Fin
10 8 9 cin ( 𝒫 ( Base ‘ 𝑤 ) ∩ Fin )
11 7 10 cima ( ( LSpan ‘ 𝑤 ) “ ( 𝒫 ( Base ‘ 𝑤 ) ∩ Fin ) )
12 5 11 wcel ( Base ‘ 𝑤 ) ∈ ( ( LSpan ‘ 𝑤 ) “ ( 𝒫 ( Base ‘ 𝑤 ) ∩ Fin ) )
13 12 1 2 crab { 𝑤 ∈ LMod ∣ ( Base ‘ 𝑤 ) ∈ ( ( LSpan ‘ 𝑤 ) “ ( 𝒫 ( Base ‘ 𝑤 ) ∩ Fin ) ) }
14 0 13 wceq LFinGen = { 𝑤 ∈ LMod ∣ ( Base ‘ 𝑤 ) ∈ ( ( LSpan ‘ 𝑤 ) “ ( 𝒫 ( Base ‘ 𝑤 ) ∩ Fin ) ) }