| Step |
Hyp |
Ref |
Expression |
| 0 |
|
clgs |
⊢ /L |
| 1 |
|
va |
⊢ 𝑎 |
| 2 |
|
cz |
⊢ ℤ |
| 3 |
|
vn |
⊢ 𝑛 |
| 4 |
3
|
cv |
⊢ 𝑛 |
| 5 |
|
cc0 |
⊢ 0 |
| 6 |
4 5
|
wceq |
⊢ 𝑛 = 0 |
| 7 |
1
|
cv |
⊢ 𝑎 |
| 8 |
|
cexp |
⊢ ↑ |
| 9 |
|
c2 |
⊢ 2 |
| 10 |
7 9 8
|
co |
⊢ ( 𝑎 ↑ 2 ) |
| 11 |
|
c1 |
⊢ 1 |
| 12 |
10 11
|
wceq |
⊢ ( 𝑎 ↑ 2 ) = 1 |
| 13 |
12 11 5
|
cif |
⊢ if ( ( 𝑎 ↑ 2 ) = 1 , 1 , 0 ) |
| 14 |
|
clt |
⊢ < |
| 15 |
4 5 14
|
wbr |
⊢ 𝑛 < 0 |
| 16 |
7 5 14
|
wbr |
⊢ 𝑎 < 0 |
| 17 |
15 16
|
wa |
⊢ ( 𝑛 < 0 ∧ 𝑎 < 0 ) |
| 18 |
11
|
cneg |
⊢ - 1 |
| 19 |
17 18 11
|
cif |
⊢ if ( ( 𝑛 < 0 ∧ 𝑎 < 0 ) , - 1 , 1 ) |
| 20 |
|
cmul |
⊢ · |
| 21 |
|
vm |
⊢ 𝑚 |
| 22 |
|
cn |
⊢ ℕ |
| 23 |
21
|
cv |
⊢ 𝑚 |
| 24 |
|
cprime |
⊢ ℙ |
| 25 |
23 24
|
wcel |
⊢ 𝑚 ∈ ℙ |
| 26 |
23 9
|
wceq |
⊢ 𝑚 = 2 |
| 27 |
|
cdvds |
⊢ ∥ |
| 28 |
9 7 27
|
wbr |
⊢ 2 ∥ 𝑎 |
| 29 |
|
cmo |
⊢ mod |
| 30 |
|
c8 |
⊢ 8 |
| 31 |
7 30 29
|
co |
⊢ ( 𝑎 mod 8 ) |
| 32 |
|
c7 |
⊢ 7 |
| 33 |
11 32
|
cpr |
⊢ { 1 , 7 } |
| 34 |
31 33
|
wcel |
⊢ ( 𝑎 mod 8 ) ∈ { 1 , 7 } |
| 35 |
34 11 18
|
cif |
⊢ if ( ( 𝑎 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) |
| 36 |
28 5 35
|
cif |
⊢ if ( 2 ∥ 𝑎 , 0 , if ( ( 𝑎 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) |
| 37 |
|
cmin |
⊢ − |
| 38 |
23 11 37
|
co |
⊢ ( 𝑚 − 1 ) |
| 39 |
|
cdiv |
⊢ / |
| 40 |
38 9 39
|
co |
⊢ ( ( 𝑚 − 1 ) / 2 ) |
| 41 |
7 40 8
|
co |
⊢ ( 𝑎 ↑ ( ( 𝑚 − 1 ) / 2 ) ) |
| 42 |
|
caddc |
⊢ + |
| 43 |
41 11 42
|
co |
⊢ ( ( 𝑎 ↑ ( ( 𝑚 − 1 ) / 2 ) ) + 1 ) |
| 44 |
43 23 29
|
co |
⊢ ( ( ( 𝑎 ↑ ( ( 𝑚 − 1 ) / 2 ) ) + 1 ) mod 𝑚 ) |
| 45 |
44 11 37
|
co |
⊢ ( ( ( ( 𝑎 ↑ ( ( 𝑚 − 1 ) / 2 ) ) + 1 ) mod 𝑚 ) − 1 ) |
| 46 |
26 36 45
|
cif |
⊢ if ( 𝑚 = 2 , if ( 2 ∥ 𝑎 , 0 , if ( ( 𝑎 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) , ( ( ( ( 𝑎 ↑ ( ( 𝑚 − 1 ) / 2 ) ) + 1 ) mod 𝑚 ) − 1 ) ) |
| 47 |
|
cpc |
⊢ pCnt |
| 48 |
23 4 47
|
co |
⊢ ( 𝑚 pCnt 𝑛 ) |
| 49 |
46 48 8
|
co |
⊢ ( if ( 𝑚 = 2 , if ( 2 ∥ 𝑎 , 0 , if ( ( 𝑎 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) , ( ( ( ( 𝑎 ↑ ( ( 𝑚 − 1 ) / 2 ) ) + 1 ) mod 𝑚 ) − 1 ) ) ↑ ( 𝑚 pCnt 𝑛 ) ) |
| 50 |
25 49 11
|
cif |
⊢ if ( 𝑚 ∈ ℙ , ( if ( 𝑚 = 2 , if ( 2 ∥ 𝑎 , 0 , if ( ( 𝑎 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) , ( ( ( ( 𝑎 ↑ ( ( 𝑚 − 1 ) / 2 ) ) + 1 ) mod 𝑚 ) − 1 ) ) ↑ ( 𝑚 pCnt 𝑛 ) ) , 1 ) |
| 51 |
21 22 50
|
cmpt |
⊢ ( 𝑚 ∈ ℕ ↦ if ( 𝑚 ∈ ℙ , ( if ( 𝑚 = 2 , if ( 2 ∥ 𝑎 , 0 , if ( ( 𝑎 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) , ( ( ( ( 𝑎 ↑ ( ( 𝑚 − 1 ) / 2 ) ) + 1 ) mod 𝑚 ) − 1 ) ) ↑ ( 𝑚 pCnt 𝑛 ) ) , 1 ) ) |
| 52 |
20 51 11
|
cseq |
⊢ seq 1 ( · , ( 𝑚 ∈ ℕ ↦ if ( 𝑚 ∈ ℙ , ( if ( 𝑚 = 2 , if ( 2 ∥ 𝑎 , 0 , if ( ( 𝑎 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) , ( ( ( ( 𝑎 ↑ ( ( 𝑚 − 1 ) / 2 ) ) + 1 ) mod 𝑚 ) − 1 ) ) ↑ ( 𝑚 pCnt 𝑛 ) ) , 1 ) ) ) |
| 53 |
|
cabs |
⊢ abs |
| 54 |
4 53
|
cfv |
⊢ ( abs ‘ 𝑛 ) |
| 55 |
54 52
|
cfv |
⊢ ( seq 1 ( · , ( 𝑚 ∈ ℕ ↦ if ( 𝑚 ∈ ℙ , ( if ( 𝑚 = 2 , if ( 2 ∥ 𝑎 , 0 , if ( ( 𝑎 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) , ( ( ( ( 𝑎 ↑ ( ( 𝑚 − 1 ) / 2 ) ) + 1 ) mod 𝑚 ) − 1 ) ) ↑ ( 𝑚 pCnt 𝑛 ) ) , 1 ) ) ) ‘ ( abs ‘ 𝑛 ) ) |
| 56 |
19 55 20
|
co |
⊢ ( if ( ( 𝑛 < 0 ∧ 𝑎 < 0 ) , - 1 , 1 ) · ( seq 1 ( · , ( 𝑚 ∈ ℕ ↦ if ( 𝑚 ∈ ℙ , ( if ( 𝑚 = 2 , if ( 2 ∥ 𝑎 , 0 , if ( ( 𝑎 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) , ( ( ( ( 𝑎 ↑ ( ( 𝑚 − 1 ) / 2 ) ) + 1 ) mod 𝑚 ) − 1 ) ) ↑ ( 𝑚 pCnt 𝑛 ) ) , 1 ) ) ) ‘ ( abs ‘ 𝑛 ) ) ) |
| 57 |
6 13 56
|
cif |
⊢ if ( 𝑛 = 0 , if ( ( 𝑎 ↑ 2 ) = 1 , 1 , 0 ) , ( if ( ( 𝑛 < 0 ∧ 𝑎 < 0 ) , - 1 , 1 ) · ( seq 1 ( · , ( 𝑚 ∈ ℕ ↦ if ( 𝑚 ∈ ℙ , ( if ( 𝑚 = 2 , if ( 2 ∥ 𝑎 , 0 , if ( ( 𝑎 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) , ( ( ( ( 𝑎 ↑ ( ( 𝑚 − 1 ) / 2 ) ) + 1 ) mod 𝑚 ) − 1 ) ) ↑ ( 𝑚 pCnt 𝑛 ) ) , 1 ) ) ) ‘ ( abs ‘ 𝑛 ) ) ) ) |
| 58 |
1 3 2 2 57
|
cmpo |
⊢ ( 𝑎 ∈ ℤ , 𝑛 ∈ ℤ ↦ if ( 𝑛 = 0 , if ( ( 𝑎 ↑ 2 ) = 1 , 1 , 0 ) , ( if ( ( 𝑛 < 0 ∧ 𝑎 < 0 ) , - 1 , 1 ) · ( seq 1 ( · , ( 𝑚 ∈ ℕ ↦ if ( 𝑚 ∈ ℙ , ( if ( 𝑚 = 2 , if ( 2 ∥ 𝑎 , 0 , if ( ( 𝑎 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) , ( ( ( ( 𝑎 ↑ ( ( 𝑚 − 1 ) / 2 ) ) + 1 ) mod 𝑚 ) − 1 ) ) ↑ ( 𝑚 pCnt 𝑛 ) ) , 1 ) ) ) ‘ ( abs ‘ 𝑛 ) ) ) ) ) |
| 59 |
0 58
|
wceq |
⊢ /L = ( 𝑎 ∈ ℤ , 𝑛 ∈ ℤ ↦ if ( 𝑛 = 0 , if ( ( 𝑎 ↑ 2 ) = 1 , 1 , 0 ) , ( if ( ( 𝑛 < 0 ∧ 𝑎 < 0 ) , - 1 , 1 ) · ( seq 1 ( · , ( 𝑚 ∈ ℕ ↦ if ( 𝑚 ∈ ℙ , ( if ( 𝑚 = 2 , if ( 2 ∥ 𝑎 , 0 , if ( ( 𝑎 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) , ( ( ( ( 𝑎 ↑ ( ( 𝑚 − 1 ) / 2 ) ) + 1 ) mod 𝑚 ) − 1 ) ) ↑ ( 𝑚 pCnt 𝑛 ) ) , 1 ) ) ) ‘ ( abs ‘ 𝑛 ) ) ) ) ) |