| Step | Hyp | Ref | Expression | 
						
							| 0 |  | climc | ⊢  limℂ | 
						
							| 1 |  | vf | ⊢ 𝑓 | 
						
							| 2 |  | cc | ⊢ ℂ | 
						
							| 3 |  | cpm | ⊢  ↑pm | 
						
							| 4 | 2 2 3 | co | ⊢ ( ℂ  ↑pm  ℂ ) | 
						
							| 5 |  | vx | ⊢ 𝑥 | 
						
							| 6 |  | vy | ⊢ 𝑦 | 
						
							| 7 |  | ctopn | ⊢ TopOpen | 
						
							| 8 |  | ccnfld | ⊢ ℂfld | 
						
							| 9 | 8 7 | cfv | ⊢ ( TopOpen ‘ ℂfld ) | 
						
							| 10 |  | vj | ⊢ 𝑗 | 
						
							| 11 |  | vz | ⊢ 𝑧 | 
						
							| 12 | 1 | cv | ⊢ 𝑓 | 
						
							| 13 | 12 | cdm | ⊢ dom  𝑓 | 
						
							| 14 | 5 | cv | ⊢ 𝑥 | 
						
							| 15 | 14 | csn | ⊢ { 𝑥 } | 
						
							| 16 | 13 15 | cun | ⊢ ( dom  𝑓  ∪  { 𝑥 } ) | 
						
							| 17 | 11 | cv | ⊢ 𝑧 | 
						
							| 18 | 17 14 | wceq | ⊢ 𝑧  =  𝑥 | 
						
							| 19 | 6 | cv | ⊢ 𝑦 | 
						
							| 20 | 17 12 | cfv | ⊢ ( 𝑓 ‘ 𝑧 ) | 
						
							| 21 | 18 19 20 | cif | ⊢ if ( 𝑧  =  𝑥 ,  𝑦 ,  ( 𝑓 ‘ 𝑧 ) ) | 
						
							| 22 | 11 16 21 | cmpt | ⊢ ( 𝑧  ∈  ( dom  𝑓  ∪  { 𝑥 } )  ↦  if ( 𝑧  =  𝑥 ,  𝑦 ,  ( 𝑓 ‘ 𝑧 ) ) ) | 
						
							| 23 | 10 | cv | ⊢ 𝑗 | 
						
							| 24 |  | crest | ⊢  ↾t | 
						
							| 25 | 23 16 24 | co | ⊢ ( 𝑗  ↾t  ( dom  𝑓  ∪  { 𝑥 } ) ) | 
						
							| 26 |  | ccnp | ⊢  CnP | 
						
							| 27 | 25 23 26 | co | ⊢ ( ( 𝑗  ↾t  ( dom  𝑓  ∪  { 𝑥 } ) )  CnP  𝑗 ) | 
						
							| 28 | 14 27 | cfv | ⊢ ( ( ( 𝑗  ↾t  ( dom  𝑓  ∪  { 𝑥 } ) )  CnP  𝑗 ) ‘ 𝑥 ) | 
						
							| 29 | 22 28 | wcel | ⊢ ( 𝑧  ∈  ( dom  𝑓  ∪  { 𝑥 } )  ↦  if ( 𝑧  =  𝑥 ,  𝑦 ,  ( 𝑓 ‘ 𝑧 ) ) )  ∈  ( ( ( 𝑗  ↾t  ( dom  𝑓  ∪  { 𝑥 } ) )  CnP  𝑗 ) ‘ 𝑥 ) | 
						
							| 30 | 29 10 9 | wsbc | ⊢ [ ( TopOpen ‘ ℂfld )  /  𝑗 ] ( 𝑧  ∈  ( dom  𝑓  ∪  { 𝑥 } )  ↦  if ( 𝑧  =  𝑥 ,  𝑦 ,  ( 𝑓 ‘ 𝑧 ) ) )  ∈  ( ( ( 𝑗  ↾t  ( dom  𝑓  ∪  { 𝑥 } ) )  CnP  𝑗 ) ‘ 𝑥 ) | 
						
							| 31 | 30 6 | cab | ⊢ { 𝑦  ∣  [ ( TopOpen ‘ ℂfld )  /  𝑗 ] ( 𝑧  ∈  ( dom  𝑓  ∪  { 𝑥 } )  ↦  if ( 𝑧  =  𝑥 ,  𝑦 ,  ( 𝑓 ‘ 𝑧 ) ) )  ∈  ( ( ( 𝑗  ↾t  ( dom  𝑓  ∪  { 𝑥 } ) )  CnP  𝑗 ) ‘ 𝑥 ) } | 
						
							| 32 | 1 5 4 2 31 | cmpo | ⊢ ( 𝑓  ∈  ( ℂ  ↑pm  ℂ ) ,  𝑥  ∈  ℂ  ↦  { 𝑦  ∣  [ ( TopOpen ‘ ℂfld )  /  𝑗 ] ( 𝑧  ∈  ( dom  𝑓  ∪  { 𝑥 } )  ↦  if ( 𝑧  =  𝑥 ,  𝑦 ,  ( 𝑓 ‘ 𝑧 ) ) )  ∈  ( ( ( 𝑗  ↾t  ( dom  𝑓  ∪  { 𝑥 } ) )  CnP  𝑗 ) ‘ 𝑥 ) } ) | 
						
							| 33 | 0 32 | wceq | ⊢  limℂ   =  ( 𝑓  ∈  ( ℂ  ↑pm  ℂ ) ,  𝑥  ∈  ℂ  ↦  { 𝑦  ∣  [ ( TopOpen ‘ ℂfld )  /  𝑗 ] ( 𝑧  ∈  ( dom  𝑓  ∪  { 𝑥 } )  ↦  if ( 𝑧  =  𝑥 ,  𝑦 ,  ( 𝑓 ‘ 𝑧 ) ) )  ∈  ( ( ( 𝑗  ↾t  ( dom  𝑓  ∪  { 𝑥 } ) )  CnP  𝑗 ) ‘ 𝑥 ) } ) |