Step |
Hyp |
Ref |
Expression |
0 |
|
climc |
⊢ limℂ |
1 |
|
vf |
⊢ 𝑓 |
2 |
|
cc |
⊢ ℂ |
3 |
|
cpm |
⊢ ↑pm |
4 |
2 2 3
|
co |
⊢ ( ℂ ↑pm ℂ ) |
5 |
|
vx |
⊢ 𝑥 |
6 |
|
vy |
⊢ 𝑦 |
7 |
|
ctopn |
⊢ TopOpen |
8 |
|
ccnfld |
⊢ ℂfld |
9 |
8 7
|
cfv |
⊢ ( TopOpen ‘ ℂfld ) |
10 |
|
vj |
⊢ 𝑗 |
11 |
|
vz |
⊢ 𝑧 |
12 |
1
|
cv |
⊢ 𝑓 |
13 |
12
|
cdm |
⊢ dom 𝑓 |
14 |
5
|
cv |
⊢ 𝑥 |
15 |
14
|
csn |
⊢ { 𝑥 } |
16 |
13 15
|
cun |
⊢ ( dom 𝑓 ∪ { 𝑥 } ) |
17 |
11
|
cv |
⊢ 𝑧 |
18 |
17 14
|
wceq |
⊢ 𝑧 = 𝑥 |
19 |
6
|
cv |
⊢ 𝑦 |
20 |
17 12
|
cfv |
⊢ ( 𝑓 ‘ 𝑧 ) |
21 |
18 19 20
|
cif |
⊢ if ( 𝑧 = 𝑥 , 𝑦 , ( 𝑓 ‘ 𝑧 ) ) |
22 |
11 16 21
|
cmpt |
⊢ ( 𝑧 ∈ ( dom 𝑓 ∪ { 𝑥 } ) ↦ if ( 𝑧 = 𝑥 , 𝑦 , ( 𝑓 ‘ 𝑧 ) ) ) |
23 |
10
|
cv |
⊢ 𝑗 |
24 |
|
crest |
⊢ ↾t |
25 |
23 16 24
|
co |
⊢ ( 𝑗 ↾t ( dom 𝑓 ∪ { 𝑥 } ) ) |
26 |
|
ccnp |
⊢ CnP |
27 |
25 23 26
|
co |
⊢ ( ( 𝑗 ↾t ( dom 𝑓 ∪ { 𝑥 } ) ) CnP 𝑗 ) |
28 |
14 27
|
cfv |
⊢ ( ( ( 𝑗 ↾t ( dom 𝑓 ∪ { 𝑥 } ) ) CnP 𝑗 ) ‘ 𝑥 ) |
29 |
22 28
|
wcel |
⊢ ( 𝑧 ∈ ( dom 𝑓 ∪ { 𝑥 } ) ↦ if ( 𝑧 = 𝑥 , 𝑦 , ( 𝑓 ‘ 𝑧 ) ) ) ∈ ( ( ( 𝑗 ↾t ( dom 𝑓 ∪ { 𝑥 } ) ) CnP 𝑗 ) ‘ 𝑥 ) |
30 |
29 10 9
|
wsbc |
⊢ [ ( TopOpen ‘ ℂfld ) / 𝑗 ] ( 𝑧 ∈ ( dom 𝑓 ∪ { 𝑥 } ) ↦ if ( 𝑧 = 𝑥 , 𝑦 , ( 𝑓 ‘ 𝑧 ) ) ) ∈ ( ( ( 𝑗 ↾t ( dom 𝑓 ∪ { 𝑥 } ) ) CnP 𝑗 ) ‘ 𝑥 ) |
31 |
30 6
|
cab |
⊢ { 𝑦 ∣ [ ( TopOpen ‘ ℂfld ) / 𝑗 ] ( 𝑧 ∈ ( dom 𝑓 ∪ { 𝑥 } ) ↦ if ( 𝑧 = 𝑥 , 𝑦 , ( 𝑓 ‘ 𝑧 ) ) ) ∈ ( ( ( 𝑗 ↾t ( dom 𝑓 ∪ { 𝑥 } ) ) CnP 𝑗 ) ‘ 𝑥 ) } |
32 |
1 5 4 2 31
|
cmpo |
⊢ ( 𝑓 ∈ ( ℂ ↑pm ℂ ) , 𝑥 ∈ ℂ ↦ { 𝑦 ∣ [ ( TopOpen ‘ ℂfld ) / 𝑗 ] ( 𝑧 ∈ ( dom 𝑓 ∪ { 𝑥 } ) ↦ if ( 𝑧 = 𝑥 , 𝑦 , ( 𝑓 ‘ 𝑧 ) ) ) ∈ ( ( ( 𝑗 ↾t ( dom 𝑓 ∪ { 𝑥 } ) ) CnP 𝑗 ) ‘ 𝑥 ) } ) |
33 |
0 32
|
wceq |
⊢ limℂ = ( 𝑓 ∈ ( ℂ ↑pm ℂ ) , 𝑥 ∈ ℂ ↦ { 𝑦 ∣ [ ( TopOpen ‘ ℂfld ) / 𝑗 ] ( 𝑧 ∈ ( dom 𝑓 ∪ { 𝑥 } ) ↦ if ( 𝑧 = 𝑥 , 𝑦 , ( 𝑓 ‘ 𝑧 ) ) ) ∈ ( ( ( 𝑗 ↾t ( dom 𝑓 ∪ { 𝑥 } ) ) CnP 𝑗 ) ‘ 𝑥 ) } ) |