Step |
Hyp |
Ref |
Expression |
0 |
|
clsp |
⊢ lim sup |
1 |
|
vx |
⊢ 𝑥 |
2 |
|
cvv |
⊢ V |
3 |
|
vk |
⊢ 𝑘 |
4 |
|
cr |
⊢ ℝ |
5 |
1
|
cv |
⊢ 𝑥 |
6 |
3
|
cv |
⊢ 𝑘 |
7 |
|
cico |
⊢ [,) |
8 |
|
cpnf |
⊢ +∞ |
9 |
6 8 7
|
co |
⊢ ( 𝑘 [,) +∞ ) |
10 |
5 9
|
cima |
⊢ ( 𝑥 “ ( 𝑘 [,) +∞ ) ) |
11 |
|
cxr |
⊢ ℝ* |
12 |
10 11
|
cin |
⊢ ( ( 𝑥 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) |
13 |
|
clt |
⊢ < |
14 |
12 11 13
|
csup |
⊢ sup ( ( ( 𝑥 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) |
15 |
3 4 14
|
cmpt |
⊢ ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝑥 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
16 |
15
|
crn |
⊢ ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝑥 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
17 |
16 11 13
|
cinf |
⊢ inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝑥 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) |
18 |
1 2 17
|
cmpt |
⊢ ( 𝑥 ∈ V ↦ inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝑥 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) ) |
19 |
0 18
|
wceq |
⊢ lim sup = ( 𝑥 ∈ V ↦ inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝑥 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) ) |