| Step | Hyp | Ref | Expression | 
						
							| 0 |  | clines | ⊢ Lines | 
						
							| 1 |  | vk | ⊢ 𝑘 | 
						
							| 2 |  | cvv | ⊢ V | 
						
							| 3 |  | vs | ⊢ 𝑠 | 
						
							| 4 |  | vq | ⊢ 𝑞 | 
						
							| 5 |  | catm | ⊢ Atoms | 
						
							| 6 | 1 | cv | ⊢ 𝑘 | 
						
							| 7 | 6 5 | cfv | ⊢ ( Atoms ‘ 𝑘 ) | 
						
							| 8 |  | vr | ⊢ 𝑟 | 
						
							| 9 | 4 | cv | ⊢ 𝑞 | 
						
							| 10 | 8 | cv | ⊢ 𝑟 | 
						
							| 11 | 9 10 | wne | ⊢ 𝑞  ≠  𝑟 | 
						
							| 12 | 3 | cv | ⊢ 𝑠 | 
						
							| 13 |  | vp | ⊢ 𝑝 | 
						
							| 14 | 13 | cv | ⊢ 𝑝 | 
						
							| 15 |  | cple | ⊢ le | 
						
							| 16 | 6 15 | cfv | ⊢ ( le ‘ 𝑘 ) | 
						
							| 17 |  | cjn | ⊢ join | 
						
							| 18 | 6 17 | cfv | ⊢ ( join ‘ 𝑘 ) | 
						
							| 19 | 9 10 18 | co | ⊢ ( 𝑞 ( join ‘ 𝑘 ) 𝑟 ) | 
						
							| 20 | 14 19 16 | wbr | ⊢ 𝑝 ( le ‘ 𝑘 ) ( 𝑞 ( join ‘ 𝑘 ) 𝑟 ) | 
						
							| 21 | 20 13 7 | crab | ⊢ { 𝑝  ∈  ( Atoms ‘ 𝑘 )  ∣  𝑝 ( le ‘ 𝑘 ) ( 𝑞 ( join ‘ 𝑘 ) 𝑟 ) } | 
						
							| 22 | 12 21 | wceq | ⊢ 𝑠  =  { 𝑝  ∈  ( Atoms ‘ 𝑘 )  ∣  𝑝 ( le ‘ 𝑘 ) ( 𝑞 ( join ‘ 𝑘 ) 𝑟 ) } | 
						
							| 23 | 11 22 | wa | ⊢ ( 𝑞  ≠  𝑟  ∧  𝑠  =  { 𝑝  ∈  ( Atoms ‘ 𝑘 )  ∣  𝑝 ( le ‘ 𝑘 ) ( 𝑞 ( join ‘ 𝑘 ) 𝑟 ) } ) | 
						
							| 24 | 23 8 7 | wrex | ⊢ ∃ 𝑟  ∈  ( Atoms ‘ 𝑘 ) ( 𝑞  ≠  𝑟  ∧  𝑠  =  { 𝑝  ∈  ( Atoms ‘ 𝑘 )  ∣  𝑝 ( le ‘ 𝑘 ) ( 𝑞 ( join ‘ 𝑘 ) 𝑟 ) } ) | 
						
							| 25 | 24 4 7 | wrex | ⊢ ∃ 𝑞  ∈  ( Atoms ‘ 𝑘 ) ∃ 𝑟  ∈  ( Atoms ‘ 𝑘 ) ( 𝑞  ≠  𝑟  ∧  𝑠  =  { 𝑝  ∈  ( Atoms ‘ 𝑘 )  ∣  𝑝 ( le ‘ 𝑘 ) ( 𝑞 ( join ‘ 𝑘 ) 𝑟 ) } ) | 
						
							| 26 | 25 3 | cab | ⊢ { 𝑠  ∣  ∃ 𝑞  ∈  ( Atoms ‘ 𝑘 ) ∃ 𝑟  ∈  ( Atoms ‘ 𝑘 ) ( 𝑞  ≠  𝑟  ∧  𝑠  =  { 𝑝  ∈  ( Atoms ‘ 𝑘 )  ∣  𝑝 ( le ‘ 𝑘 ) ( 𝑞 ( join ‘ 𝑘 ) 𝑟 ) } ) } | 
						
							| 27 | 1 2 26 | cmpt | ⊢ ( 𝑘  ∈  V  ↦  { 𝑠  ∣  ∃ 𝑞  ∈  ( Atoms ‘ 𝑘 ) ∃ 𝑟  ∈  ( Atoms ‘ 𝑘 ) ( 𝑞  ≠  𝑟  ∧  𝑠  =  { 𝑝  ∈  ( Atoms ‘ 𝑘 )  ∣  𝑝 ( le ‘ 𝑘 ) ( 𝑞 ( join ‘ 𝑘 ) 𝑟 ) } ) } ) | 
						
							| 28 | 0 27 | wceq | ⊢ Lines  =  ( 𝑘  ∈  V  ↦  { 𝑠  ∣  ∃ 𝑞  ∈  ( Atoms ‘ 𝑘 ) ∃ 𝑟  ∈  ( Atoms ‘ 𝑘 ) ( 𝑞  ≠  𝑟  ∧  𝑠  =  { 𝑝  ∈  ( Atoms ‘ 𝑘 )  ∣  𝑝 ( le ‘ 𝑘 ) ( 𝑞 ( join ‘ 𝑘 ) 𝑟 ) } ) } ) |