Metamath Proof Explorer


Definition df-lly

Description: Define a space that is locally A , where A is a topological property like "compact", "connected", or "path-connected". A topological space is locally A if every neighborhood of a point contains an open subneighborhood that is A in the subspace topology. (Contributed by Mario Carneiro, 2-Mar-2015)

Ref Expression
Assertion df-lly Locally 𝐴 = { 𝑗 ∈ Top ∣ ∀ 𝑥𝑗𝑦𝑥𝑢 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 𝐴 ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA 𝐴
1 0 clly Locally 𝐴
2 vj 𝑗
3 ctop Top
4 vx 𝑥
5 2 cv 𝑗
6 vy 𝑦
7 4 cv 𝑥
8 vu 𝑢
9 7 cpw 𝒫 𝑥
10 5 9 cin ( 𝑗 ∩ 𝒫 𝑥 )
11 6 cv 𝑦
12 8 cv 𝑢
13 11 12 wcel 𝑦𝑢
14 crest t
15 5 12 14 co ( 𝑗t 𝑢 )
16 15 0 wcel ( 𝑗t 𝑢 ) ∈ 𝐴
17 13 16 wa ( 𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 𝐴 )
18 17 8 10 wrex 𝑢 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 𝐴 )
19 18 6 7 wral 𝑦𝑥𝑢 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 𝐴 )
20 19 4 5 wral 𝑥𝑗𝑦𝑥𝑢 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 𝐴 )
21 20 2 3 crab { 𝑗 ∈ Top ∣ ∀ 𝑥𝑗𝑦𝑥𝑢 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 𝐴 ) }
22 1 21 wceq Locally 𝐴 = { 𝑗 ∈ Top ∣ ∀ 𝑥𝑗𝑦𝑥𝑢 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦𝑢 ∧ ( 𝑗t 𝑢 ) ∈ 𝐴 ) }