Database
BASIC TOPOLOGY
Topology
Local topological properties
df-lly
Metamath Proof Explorer
Description: Define a space that is locally A , where A is a topological
property like "compact", "connected", or "path-connected". A
topological space is locally A if every neighborhood of a point
contains an open subneighborhood that is A in the subspace topology.
(Contributed by Mario Carneiro , 2-Mar-2015)
Ref
Expression
Assertion
df-lly
⊢ Locally 𝐴 = { 𝑗 ∈ Top ∣ ∀ 𝑥 ∈ 𝑗 ∀ 𝑦 ∈ 𝑥 ∃ 𝑢 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝐴 ) }
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cA
⊢ 𝐴
1
0
clly
⊢ Locally 𝐴
2
vj
⊢ 𝑗
3
ctop
⊢ Top
4
vx
⊢ 𝑥
5
2
cv
⊢ 𝑗
6
vy
⊢ 𝑦
7
4
cv
⊢ 𝑥
8
vu
⊢ 𝑢
9
7
cpw
⊢ 𝒫 𝑥
10
5 9
cin
⊢ ( 𝑗 ∩ 𝒫 𝑥 )
11
6
cv
⊢ 𝑦
12
8
cv
⊢ 𝑢
13
11 12
wcel
⊢ 𝑦 ∈ 𝑢
14
crest
⊢ ↾t
15
5 12 14
co
⊢ ( 𝑗 ↾t 𝑢 )
16
15 0
wcel
⊢ ( 𝑗 ↾t 𝑢 ) ∈ 𝐴
17
13 16
wa
⊢ ( 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝐴 )
18
17 8 10
wrex
⊢ ∃ 𝑢 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝐴 )
19
18 6 7
wral
⊢ ∀ 𝑦 ∈ 𝑥 ∃ 𝑢 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝐴 )
20
19 4 5
wral
⊢ ∀ 𝑥 ∈ 𝑗 ∀ 𝑦 ∈ 𝑥 ∃ 𝑢 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝐴 )
21
20 2 3
crab
⊢ { 𝑗 ∈ Top ∣ ∀ 𝑥 ∈ 𝑗 ∀ 𝑦 ∈ 𝑥 ∃ 𝑢 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝐴 ) }
22
1 21
wceq
⊢ Locally 𝐴 = { 𝑗 ∈ Top ∣ ∀ 𝑥 ∈ 𝑗 ∀ 𝑦 ∈ 𝑥 ∃ 𝑢 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ 𝐴 ) }