Step |
Hyp |
Ref |
Expression |
0 |
|
clm |
⊢ ⇝𝑡 |
1 |
|
vj |
⊢ 𝑗 |
2 |
|
ctop |
⊢ Top |
3 |
|
vf |
⊢ 𝑓 |
4 |
|
vx |
⊢ 𝑥 |
5 |
3
|
cv |
⊢ 𝑓 |
6 |
1
|
cv |
⊢ 𝑗 |
7 |
6
|
cuni |
⊢ ∪ 𝑗 |
8 |
|
cpm |
⊢ ↑pm |
9 |
|
cc |
⊢ ℂ |
10 |
7 9 8
|
co |
⊢ ( ∪ 𝑗 ↑pm ℂ ) |
11 |
5 10
|
wcel |
⊢ 𝑓 ∈ ( ∪ 𝑗 ↑pm ℂ ) |
12 |
4
|
cv |
⊢ 𝑥 |
13 |
12 7
|
wcel |
⊢ 𝑥 ∈ ∪ 𝑗 |
14 |
|
vu |
⊢ 𝑢 |
15 |
14
|
cv |
⊢ 𝑢 |
16 |
12 15
|
wcel |
⊢ 𝑥 ∈ 𝑢 |
17 |
|
vy |
⊢ 𝑦 |
18 |
|
cuz |
⊢ ℤ≥ |
19 |
18
|
crn |
⊢ ran ℤ≥ |
20 |
17
|
cv |
⊢ 𝑦 |
21 |
5 20
|
cres |
⊢ ( 𝑓 ↾ 𝑦 ) |
22 |
20 15 21
|
wf |
⊢ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 |
23 |
22 17 19
|
wrex |
⊢ ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 |
24 |
16 23
|
wi |
⊢ ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) |
25 |
24 14 6
|
wral |
⊢ ∀ 𝑢 ∈ 𝑗 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) |
26 |
11 13 25
|
w3a |
⊢ ( 𝑓 ∈ ( ∪ 𝑗 ↑pm ℂ ) ∧ 𝑥 ∈ ∪ 𝑗 ∧ ∀ 𝑢 ∈ 𝑗 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) |
27 |
26 3 4
|
copab |
⊢ { 〈 𝑓 , 𝑥 〉 ∣ ( 𝑓 ∈ ( ∪ 𝑗 ↑pm ℂ ) ∧ 𝑥 ∈ ∪ 𝑗 ∧ ∀ 𝑢 ∈ 𝑗 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) } |
28 |
1 2 27
|
cmpt |
⊢ ( 𝑗 ∈ Top ↦ { 〈 𝑓 , 𝑥 〉 ∣ ( 𝑓 ∈ ( ∪ 𝑗 ↑pm ℂ ) ∧ 𝑥 ∈ ∪ 𝑗 ∧ ∀ 𝑢 ∈ 𝑗 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) } ) |
29 |
0 28
|
wceq |
⊢ ⇝𝑡 = ( 𝑗 ∈ Top ↦ { 〈 𝑓 , 𝑥 〉 ∣ ( 𝑓 ∈ ( ∪ 𝑗 ↑pm ℂ ) ∧ 𝑥 ∈ ∪ 𝑗 ∧ ∀ 𝑢 ∈ 𝑗 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) } ) |