Metamath Proof Explorer


Definition df-lmhm

Description: A homomorphism of left modules is a group homomorphism which additionally preserves the scalar product. This requires both structures to be left modules over the same ring. (Contributed by Stefan O'Rear, 31-Dec-2014)

Ref Expression
Assertion df-lmhm LMHom = ( 𝑠 ∈ LMod , 𝑡 ∈ LMod ↦ { 𝑓 ∈ ( 𝑠 GrpHom 𝑡 ) ∣ [ ( Scalar ‘ 𝑠 ) / 𝑤 ] ( ( Scalar ‘ 𝑡 ) = 𝑤 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( ·𝑠𝑠 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠𝑡 ) ( 𝑓𝑦 ) ) ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 clmhm LMHom
1 vs 𝑠
2 clmod LMod
3 vt 𝑡
4 vf 𝑓
5 1 cv 𝑠
6 cghm GrpHom
7 3 cv 𝑡
8 5 7 6 co ( 𝑠 GrpHom 𝑡 )
9 csca Scalar
10 5 9 cfv ( Scalar ‘ 𝑠 )
11 vw 𝑤
12 7 9 cfv ( Scalar ‘ 𝑡 )
13 11 cv 𝑤
14 12 13 wceq ( Scalar ‘ 𝑡 ) = 𝑤
15 vx 𝑥
16 cbs Base
17 13 16 cfv ( Base ‘ 𝑤 )
18 vy 𝑦
19 5 16 cfv ( Base ‘ 𝑠 )
20 4 cv 𝑓
21 15 cv 𝑥
22 cvsca ·𝑠
23 5 22 cfv ( ·𝑠𝑠 )
24 18 cv 𝑦
25 21 24 23 co ( 𝑥 ( ·𝑠𝑠 ) 𝑦 )
26 25 20 cfv ( 𝑓 ‘ ( 𝑥 ( ·𝑠𝑠 ) 𝑦 ) )
27 7 22 cfv ( ·𝑠𝑡 )
28 24 20 cfv ( 𝑓𝑦 )
29 21 28 27 co ( 𝑥 ( ·𝑠𝑡 ) ( 𝑓𝑦 ) )
30 26 29 wceq ( 𝑓 ‘ ( 𝑥 ( ·𝑠𝑠 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠𝑡 ) ( 𝑓𝑦 ) )
31 30 18 19 wral 𝑦 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( ·𝑠𝑠 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠𝑡 ) ( 𝑓𝑦 ) )
32 31 15 17 wral 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( ·𝑠𝑠 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠𝑡 ) ( 𝑓𝑦 ) )
33 14 32 wa ( ( Scalar ‘ 𝑡 ) = 𝑤 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( ·𝑠𝑠 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠𝑡 ) ( 𝑓𝑦 ) ) )
34 33 11 10 wsbc [ ( Scalar ‘ 𝑠 ) / 𝑤 ] ( ( Scalar ‘ 𝑡 ) = 𝑤 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( ·𝑠𝑠 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠𝑡 ) ( 𝑓𝑦 ) ) )
35 34 4 8 crab { 𝑓 ∈ ( 𝑠 GrpHom 𝑡 ) ∣ [ ( Scalar ‘ 𝑠 ) / 𝑤 ] ( ( Scalar ‘ 𝑡 ) = 𝑤 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( ·𝑠𝑠 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠𝑡 ) ( 𝑓𝑦 ) ) ) }
36 1 3 2 2 35 cmpo ( 𝑠 ∈ LMod , 𝑡 ∈ LMod ↦ { 𝑓 ∈ ( 𝑠 GrpHom 𝑡 ) ∣ [ ( Scalar ‘ 𝑠 ) / 𝑤 ] ( ( Scalar ‘ 𝑡 ) = 𝑤 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( ·𝑠𝑠 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠𝑡 ) ( 𝑓𝑦 ) ) ) } )
37 0 36 wceq LMHom = ( 𝑠 ∈ LMod , 𝑡 ∈ LMod ↦ { 𝑓 ∈ ( 𝑠 GrpHom 𝑡 ) ∣ [ ( Scalar ‘ 𝑠 ) / 𝑤 ] ( ( Scalar ‘ 𝑡 ) = 𝑤 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( ·𝑠𝑠 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠𝑡 ) ( 𝑓𝑦 ) ) ) } )