| Step |
Hyp |
Ref |
Expression |
| 0 |
|
clmhm |
⊢ LMHom |
| 1 |
|
vs |
⊢ 𝑠 |
| 2 |
|
clmod |
⊢ LMod |
| 3 |
|
vt |
⊢ 𝑡 |
| 4 |
|
vf |
⊢ 𝑓 |
| 5 |
1
|
cv |
⊢ 𝑠 |
| 6 |
|
cghm |
⊢ GrpHom |
| 7 |
3
|
cv |
⊢ 𝑡 |
| 8 |
5 7 6
|
co |
⊢ ( 𝑠 GrpHom 𝑡 ) |
| 9 |
|
csca |
⊢ Scalar |
| 10 |
5 9
|
cfv |
⊢ ( Scalar ‘ 𝑠 ) |
| 11 |
|
vw |
⊢ 𝑤 |
| 12 |
7 9
|
cfv |
⊢ ( Scalar ‘ 𝑡 ) |
| 13 |
11
|
cv |
⊢ 𝑤 |
| 14 |
12 13
|
wceq |
⊢ ( Scalar ‘ 𝑡 ) = 𝑤 |
| 15 |
|
vx |
⊢ 𝑥 |
| 16 |
|
cbs |
⊢ Base |
| 17 |
13 16
|
cfv |
⊢ ( Base ‘ 𝑤 ) |
| 18 |
|
vy |
⊢ 𝑦 |
| 19 |
5 16
|
cfv |
⊢ ( Base ‘ 𝑠 ) |
| 20 |
4
|
cv |
⊢ 𝑓 |
| 21 |
15
|
cv |
⊢ 𝑥 |
| 22 |
|
cvsca |
⊢ ·𝑠 |
| 23 |
5 22
|
cfv |
⊢ ( ·𝑠 ‘ 𝑠 ) |
| 24 |
18
|
cv |
⊢ 𝑦 |
| 25 |
21 24 23
|
co |
⊢ ( 𝑥 ( ·𝑠 ‘ 𝑠 ) 𝑦 ) |
| 26 |
25 20
|
cfv |
⊢ ( 𝑓 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑠 ) 𝑦 ) ) |
| 27 |
7 22
|
cfv |
⊢ ( ·𝑠 ‘ 𝑡 ) |
| 28 |
24 20
|
cfv |
⊢ ( 𝑓 ‘ 𝑦 ) |
| 29 |
21 28 27
|
co |
⊢ ( 𝑥 ( ·𝑠 ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) |
| 30 |
26 29
|
wceq |
⊢ ( 𝑓 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑠 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) |
| 31 |
30 18 19
|
wral |
⊢ ∀ 𝑦 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑠 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) |
| 32 |
31 15 17
|
wral |
⊢ ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑠 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) |
| 33 |
14 32
|
wa |
⊢ ( ( Scalar ‘ 𝑡 ) = 𝑤 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑠 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) ) |
| 34 |
33 11 10
|
wsbc |
⊢ [ ( Scalar ‘ 𝑠 ) / 𝑤 ] ( ( Scalar ‘ 𝑡 ) = 𝑤 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑠 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) ) |
| 35 |
34 4 8
|
crab |
⊢ { 𝑓 ∈ ( 𝑠 GrpHom 𝑡 ) ∣ [ ( Scalar ‘ 𝑠 ) / 𝑤 ] ( ( Scalar ‘ 𝑡 ) = 𝑤 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑠 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) ) } |
| 36 |
1 3 2 2 35
|
cmpo |
⊢ ( 𝑠 ∈ LMod , 𝑡 ∈ LMod ↦ { 𝑓 ∈ ( 𝑠 GrpHom 𝑡 ) ∣ [ ( Scalar ‘ 𝑠 ) / 𝑤 ] ( ( Scalar ‘ 𝑡 ) = 𝑤 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑠 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) ) } ) |
| 37 |
0 36
|
wceq |
⊢ LMHom = ( 𝑠 ∈ LMod , 𝑡 ∈ LMod ↦ { 𝑓 ∈ ( 𝑠 GrpHom 𝑡 ) ∣ [ ( Scalar ‘ 𝑠 ) / 𝑤 ] ( ( Scalar ‘ 𝑡 ) = 𝑤 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑤 ) ∀ 𝑦 ∈ ( Base ‘ 𝑠 ) ( 𝑓 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑠 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑡 ) ( 𝑓 ‘ 𝑦 ) ) ) } ) |