Metamath Proof Explorer


Definition df-lmi

Description: Define the line mirroring function. Definition 10.3 of Schwabhauser p. 89. See islmib . (Contributed by Thierry Arnoux, 1-Dec-2019)

Ref Expression
Assertion df-lmi lInvG = ( 𝑔 ∈ V ↦ ( 𝑚 ∈ ran ( LineG ‘ 𝑔 ) ↦ ( 𝑎 ∈ ( Base ‘ 𝑔 ) ↦ ( 𝑏 ∈ ( Base ‘ 𝑔 ) ( ( 𝑎 ( midG ‘ 𝑔 ) 𝑏 ) ∈ 𝑚 ∧ ( 𝑚 ( ⟂G ‘ 𝑔 ) ( 𝑎 ( LineG ‘ 𝑔 ) 𝑏 ) ∨ 𝑎 = 𝑏 ) ) ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 clmi lInvG
1 vg 𝑔
2 cvv V
3 vm 𝑚
4 clng LineG
5 1 cv 𝑔
6 5 4 cfv ( LineG ‘ 𝑔 )
7 6 crn ran ( LineG ‘ 𝑔 )
8 va 𝑎
9 cbs Base
10 5 9 cfv ( Base ‘ 𝑔 )
11 vb 𝑏
12 8 cv 𝑎
13 cmid midG
14 5 13 cfv ( midG ‘ 𝑔 )
15 11 cv 𝑏
16 12 15 14 co ( 𝑎 ( midG ‘ 𝑔 ) 𝑏 )
17 3 cv 𝑚
18 16 17 wcel ( 𝑎 ( midG ‘ 𝑔 ) 𝑏 ) ∈ 𝑚
19 cperpg ⟂G
20 5 19 cfv ( ⟂G ‘ 𝑔 )
21 12 15 6 co ( 𝑎 ( LineG ‘ 𝑔 ) 𝑏 )
22 17 21 20 wbr 𝑚 ( ⟂G ‘ 𝑔 ) ( 𝑎 ( LineG ‘ 𝑔 ) 𝑏 )
23 12 15 wceq 𝑎 = 𝑏
24 22 23 wo ( 𝑚 ( ⟂G ‘ 𝑔 ) ( 𝑎 ( LineG ‘ 𝑔 ) 𝑏 ) ∨ 𝑎 = 𝑏 )
25 18 24 wa ( ( 𝑎 ( midG ‘ 𝑔 ) 𝑏 ) ∈ 𝑚 ∧ ( 𝑚 ( ⟂G ‘ 𝑔 ) ( 𝑎 ( LineG ‘ 𝑔 ) 𝑏 ) ∨ 𝑎 = 𝑏 ) )
26 25 11 10 crio ( 𝑏 ∈ ( Base ‘ 𝑔 ) ( ( 𝑎 ( midG ‘ 𝑔 ) 𝑏 ) ∈ 𝑚 ∧ ( 𝑚 ( ⟂G ‘ 𝑔 ) ( 𝑎 ( LineG ‘ 𝑔 ) 𝑏 ) ∨ 𝑎 = 𝑏 ) ) )
27 8 10 26 cmpt ( 𝑎 ∈ ( Base ‘ 𝑔 ) ↦ ( 𝑏 ∈ ( Base ‘ 𝑔 ) ( ( 𝑎 ( midG ‘ 𝑔 ) 𝑏 ) ∈ 𝑚 ∧ ( 𝑚 ( ⟂G ‘ 𝑔 ) ( 𝑎 ( LineG ‘ 𝑔 ) 𝑏 ) ∨ 𝑎 = 𝑏 ) ) ) )
28 3 7 27 cmpt ( 𝑚 ∈ ran ( LineG ‘ 𝑔 ) ↦ ( 𝑎 ∈ ( Base ‘ 𝑔 ) ↦ ( 𝑏 ∈ ( Base ‘ 𝑔 ) ( ( 𝑎 ( midG ‘ 𝑔 ) 𝑏 ) ∈ 𝑚 ∧ ( 𝑚 ( ⟂G ‘ 𝑔 ) ( 𝑎 ( LineG ‘ 𝑔 ) 𝑏 ) ∨ 𝑎 = 𝑏 ) ) ) ) )
29 1 2 28 cmpt ( 𝑔 ∈ V ↦ ( 𝑚 ∈ ran ( LineG ‘ 𝑔 ) ↦ ( 𝑎 ∈ ( Base ‘ 𝑔 ) ↦ ( 𝑏 ∈ ( Base ‘ 𝑔 ) ( ( 𝑎 ( midG ‘ 𝑔 ) 𝑏 ) ∈ 𝑚 ∧ ( 𝑚 ( ⟂G ‘ 𝑔 ) ( 𝑎 ( LineG ‘ 𝑔 ) 𝑏 ) ∨ 𝑎 = 𝑏 ) ) ) ) ) )
30 0 29 wceq lInvG = ( 𝑔 ∈ V ↦ ( 𝑚 ∈ ran ( LineG ‘ 𝑔 ) ↦ ( 𝑎 ∈ ( Base ‘ 𝑔 ) ↦ ( 𝑏 ∈ ( Base ‘ 𝑔 ) ( ( 𝑎 ( midG ‘ 𝑔 ) 𝑏 ) ∈ 𝑚 ∧ ( 𝑚 ( ⟂G ‘ 𝑔 ) ( 𝑎 ( LineG ‘ 𝑔 ) 𝑏 ) ∨ 𝑎 = 𝑏 ) ) ) ) ) )