Step |
Hyp |
Ref |
Expression |
0 |
|
clmi |
⊢ lInvG |
1 |
|
vg |
⊢ 𝑔 |
2 |
|
cvv |
⊢ V |
3 |
|
vm |
⊢ 𝑚 |
4 |
|
clng |
⊢ LineG |
5 |
1
|
cv |
⊢ 𝑔 |
6 |
5 4
|
cfv |
⊢ ( LineG ‘ 𝑔 ) |
7 |
6
|
crn |
⊢ ran ( LineG ‘ 𝑔 ) |
8 |
|
va |
⊢ 𝑎 |
9 |
|
cbs |
⊢ Base |
10 |
5 9
|
cfv |
⊢ ( Base ‘ 𝑔 ) |
11 |
|
vb |
⊢ 𝑏 |
12 |
8
|
cv |
⊢ 𝑎 |
13 |
|
cmid |
⊢ midG |
14 |
5 13
|
cfv |
⊢ ( midG ‘ 𝑔 ) |
15 |
11
|
cv |
⊢ 𝑏 |
16 |
12 15 14
|
co |
⊢ ( 𝑎 ( midG ‘ 𝑔 ) 𝑏 ) |
17 |
3
|
cv |
⊢ 𝑚 |
18 |
16 17
|
wcel |
⊢ ( 𝑎 ( midG ‘ 𝑔 ) 𝑏 ) ∈ 𝑚 |
19 |
|
cperpg |
⊢ ⟂G |
20 |
5 19
|
cfv |
⊢ ( ⟂G ‘ 𝑔 ) |
21 |
12 15 6
|
co |
⊢ ( 𝑎 ( LineG ‘ 𝑔 ) 𝑏 ) |
22 |
17 21 20
|
wbr |
⊢ 𝑚 ( ⟂G ‘ 𝑔 ) ( 𝑎 ( LineG ‘ 𝑔 ) 𝑏 ) |
23 |
12 15
|
wceq |
⊢ 𝑎 = 𝑏 |
24 |
22 23
|
wo |
⊢ ( 𝑚 ( ⟂G ‘ 𝑔 ) ( 𝑎 ( LineG ‘ 𝑔 ) 𝑏 ) ∨ 𝑎 = 𝑏 ) |
25 |
18 24
|
wa |
⊢ ( ( 𝑎 ( midG ‘ 𝑔 ) 𝑏 ) ∈ 𝑚 ∧ ( 𝑚 ( ⟂G ‘ 𝑔 ) ( 𝑎 ( LineG ‘ 𝑔 ) 𝑏 ) ∨ 𝑎 = 𝑏 ) ) |
26 |
25 11 10
|
crio |
⊢ ( ℩ 𝑏 ∈ ( Base ‘ 𝑔 ) ( ( 𝑎 ( midG ‘ 𝑔 ) 𝑏 ) ∈ 𝑚 ∧ ( 𝑚 ( ⟂G ‘ 𝑔 ) ( 𝑎 ( LineG ‘ 𝑔 ) 𝑏 ) ∨ 𝑎 = 𝑏 ) ) ) |
27 |
8 10 26
|
cmpt |
⊢ ( 𝑎 ∈ ( Base ‘ 𝑔 ) ↦ ( ℩ 𝑏 ∈ ( Base ‘ 𝑔 ) ( ( 𝑎 ( midG ‘ 𝑔 ) 𝑏 ) ∈ 𝑚 ∧ ( 𝑚 ( ⟂G ‘ 𝑔 ) ( 𝑎 ( LineG ‘ 𝑔 ) 𝑏 ) ∨ 𝑎 = 𝑏 ) ) ) ) |
28 |
3 7 27
|
cmpt |
⊢ ( 𝑚 ∈ ran ( LineG ‘ 𝑔 ) ↦ ( 𝑎 ∈ ( Base ‘ 𝑔 ) ↦ ( ℩ 𝑏 ∈ ( Base ‘ 𝑔 ) ( ( 𝑎 ( midG ‘ 𝑔 ) 𝑏 ) ∈ 𝑚 ∧ ( 𝑚 ( ⟂G ‘ 𝑔 ) ( 𝑎 ( LineG ‘ 𝑔 ) 𝑏 ) ∨ 𝑎 = 𝑏 ) ) ) ) ) |
29 |
1 2 28
|
cmpt |
⊢ ( 𝑔 ∈ V ↦ ( 𝑚 ∈ ran ( LineG ‘ 𝑔 ) ↦ ( 𝑎 ∈ ( Base ‘ 𝑔 ) ↦ ( ℩ 𝑏 ∈ ( Base ‘ 𝑔 ) ( ( 𝑎 ( midG ‘ 𝑔 ) 𝑏 ) ∈ 𝑚 ∧ ( 𝑚 ( ⟂G ‘ 𝑔 ) ( 𝑎 ( LineG ‘ 𝑔 ) 𝑏 ) ∨ 𝑎 = 𝑏 ) ) ) ) ) ) |
30 |
0 29
|
wceq |
⊢ lInvG = ( 𝑔 ∈ V ↦ ( 𝑚 ∈ ran ( LineG ‘ 𝑔 ) ↦ ( 𝑎 ∈ ( Base ‘ 𝑔 ) ↦ ( ℩ 𝑏 ∈ ( Base ‘ 𝑔 ) ( ( 𝑎 ( midG ‘ 𝑔 ) 𝑏 ) ∈ 𝑚 ∧ ( 𝑚 ( ⟂G ‘ 𝑔 ) ( 𝑎 ( LineG ‘ 𝑔 ) 𝑏 ) ∨ 𝑎 = 𝑏 ) ) ) ) ) ) |