Step |
Hyp |
Ref |
Expression |
0 |
|
clmim |
⊢ LMIso |
1 |
|
vs |
⊢ 𝑠 |
2 |
|
clmod |
⊢ LMod |
3 |
|
vt |
⊢ 𝑡 |
4 |
|
vg |
⊢ 𝑔 |
5 |
1
|
cv |
⊢ 𝑠 |
6 |
|
clmhm |
⊢ LMHom |
7 |
3
|
cv |
⊢ 𝑡 |
8 |
5 7 6
|
co |
⊢ ( 𝑠 LMHom 𝑡 ) |
9 |
4
|
cv |
⊢ 𝑔 |
10 |
|
cbs |
⊢ Base |
11 |
5 10
|
cfv |
⊢ ( Base ‘ 𝑠 ) |
12 |
7 10
|
cfv |
⊢ ( Base ‘ 𝑡 ) |
13 |
11 12 9
|
wf1o |
⊢ 𝑔 : ( Base ‘ 𝑠 ) –1-1-onto→ ( Base ‘ 𝑡 ) |
14 |
13 4 8
|
crab |
⊢ { 𝑔 ∈ ( 𝑠 LMHom 𝑡 ) ∣ 𝑔 : ( Base ‘ 𝑠 ) –1-1-onto→ ( Base ‘ 𝑡 ) } |
15 |
1 3 2 2 14
|
cmpo |
⊢ ( 𝑠 ∈ LMod , 𝑡 ∈ LMod ↦ { 𝑔 ∈ ( 𝑠 LMHom 𝑡 ) ∣ 𝑔 : ( Base ‘ 𝑠 ) –1-1-onto→ ( Base ‘ 𝑡 ) } ) |
16 |
0 15
|
wceq |
⊢ LMIso = ( 𝑠 ∈ LMod , 𝑡 ∈ LMod ↦ { 𝑔 ∈ ( 𝑠 LMHom 𝑡 ) ∣ 𝑔 : ( Base ‘ 𝑠 ) –1-1-onto→ ( Base ‘ 𝑡 ) } ) |