| Step | Hyp | Ref | Expression | 
						
							| 0 |  | clmim | ⊢  LMIso | 
						
							| 1 |  | vs | ⊢ 𝑠 | 
						
							| 2 |  | clmod | ⊢ LMod | 
						
							| 3 |  | vt | ⊢ 𝑡 | 
						
							| 4 |  | vg | ⊢ 𝑔 | 
						
							| 5 | 1 | cv | ⊢ 𝑠 | 
						
							| 6 |  | clmhm | ⊢  LMHom | 
						
							| 7 | 3 | cv | ⊢ 𝑡 | 
						
							| 8 | 5 7 6 | co | ⊢ ( 𝑠  LMHom  𝑡 ) | 
						
							| 9 | 4 | cv | ⊢ 𝑔 | 
						
							| 10 |  | cbs | ⊢ Base | 
						
							| 11 | 5 10 | cfv | ⊢ ( Base ‘ 𝑠 ) | 
						
							| 12 | 7 10 | cfv | ⊢ ( Base ‘ 𝑡 ) | 
						
							| 13 | 11 12 9 | wf1o | ⊢ 𝑔 : ( Base ‘ 𝑠 ) –1-1-onto→ ( Base ‘ 𝑡 ) | 
						
							| 14 | 13 4 8 | crab | ⊢ { 𝑔  ∈  ( 𝑠  LMHom  𝑡 )  ∣  𝑔 : ( Base ‘ 𝑠 ) –1-1-onto→ ( Base ‘ 𝑡 ) } | 
						
							| 15 | 1 3 2 2 14 | cmpo | ⊢ ( 𝑠  ∈  LMod ,  𝑡  ∈  LMod  ↦  { 𝑔  ∈  ( 𝑠  LMHom  𝑡 )  ∣  𝑔 : ( Base ‘ 𝑠 ) –1-1-onto→ ( Base ‘ 𝑡 ) } ) | 
						
							| 16 | 0 15 | wceq | ⊢  LMIso   =  ( 𝑠  ∈  LMod ,  𝑡  ∈  LMod  ↦  { 𝑔  ∈  ( 𝑠  LMHom  𝑡 )  ∣  𝑔 : ( Base ‘ 𝑠 ) –1-1-onto→ ( Base ‘ 𝑡 ) } ) |