| Step |
Hyp |
Ref |
Expression |
| 0 |
|
clmod |
⊢ LMod |
| 1 |
|
vg |
⊢ 𝑔 |
| 2 |
|
cgrp |
⊢ Grp |
| 3 |
|
cbs |
⊢ Base |
| 4 |
1
|
cv |
⊢ 𝑔 |
| 5 |
4 3
|
cfv |
⊢ ( Base ‘ 𝑔 ) |
| 6 |
|
vv |
⊢ 𝑣 |
| 7 |
|
cplusg |
⊢ +g |
| 8 |
4 7
|
cfv |
⊢ ( +g ‘ 𝑔 ) |
| 9 |
|
va |
⊢ 𝑎 |
| 10 |
|
csca |
⊢ Scalar |
| 11 |
4 10
|
cfv |
⊢ ( Scalar ‘ 𝑔 ) |
| 12 |
|
vf |
⊢ 𝑓 |
| 13 |
|
cvsca |
⊢ ·𝑠 |
| 14 |
4 13
|
cfv |
⊢ ( ·𝑠 ‘ 𝑔 ) |
| 15 |
|
vs |
⊢ 𝑠 |
| 16 |
12
|
cv |
⊢ 𝑓 |
| 17 |
16 3
|
cfv |
⊢ ( Base ‘ 𝑓 ) |
| 18 |
|
vk |
⊢ 𝑘 |
| 19 |
16 7
|
cfv |
⊢ ( +g ‘ 𝑓 ) |
| 20 |
|
vp |
⊢ 𝑝 |
| 21 |
|
cmulr |
⊢ .r |
| 22 |
16 21
|
cfv |
⊢ ( .r ‘ 𝑓 ) |
| 23 |
|
vt |
⊢ 𝑡 |
| 24 |
|
crg |
⊢ Ring |
| 25 |
16 24
|
wcel |
⊢ 𝑓 ∈ Ring |
| 26 |
|
vq |
⊢ 𝑞 |
| 27 |
18
|
cv |
⊢ 𝑘 |
| 28 |
|
vr |
⊢ 𝑟 |
| 29 |
|
vx |
⊢ 𝑥 |
| 30 |
6
|
cv |
⊢ 𝑣 |
| 31 |
|
vw |
⊢ 𝑤 |
| 32 |
28
|
cv |
⊢ 𝑟 |
| 33 |
15
|
cv |
⊢ 𝑠 |
| 34 |
31
|
cv |
⊢ 𝑤 |
| 35 |
32 34 33
|
co |
⊢ ( 𝑟 𝑠 𝑤 ) |
| 36 |
35 30
|
wcel |
⊢ ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 |
| 37 |
9
|
cv |
⊢ 𝑎 |
| 38 |
29
|
cv |
⊢ 𝑥 |
| 39 |
34 38 37
|
co |
⊢ ( 𝑤 𝑎 𝑥 ) |
| 40 |
32 39 33
|
co |
⊢ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) |
| 41 |
32 38 33
|
co |
⊢ ( 𝑟 𝑠 𝑥 ) |
| 42 |
35 41 37
|
co |
⊢ ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) |
| 43 |
40 42
|
wceq |
⊢ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) |
| 44 |
26
|
cv |
⊢ 𝑞 |
| 45 |
20
|
cv |
⊢ 𝑝 |
| 46 |
44 32 45
|
co |
⊢ ( 𝑞 𝑝 𝑟 ) |
| 47 |
46 34 33
|
co |
⊢ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) |
| 48 |
44 34 33
|
co |
⊢ ( 𝑞 𝑠 𝑤 ) |
| 49 |
48 35 37
|
co |
⊢ ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) |
| 50 |
47 49
|
wceq |
⊢ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) |
| 51 |
36 43 50
|
w3a |
⊢ ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) |
| 52 |
23
|
cv |
⊢ 𝑡 |
| 53 |
44 32 52
|
co |
⊢ ( 𝑞 𝑡 𝑟 ) |
| 54 |
53 34 33
|
co |
⊢ ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) |
| 55 |
44 35 33
|
co |
⊢ ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) |
| 56 |
54 55
|
wceq |
⊢ ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) |
| 57 |
|
cur |
⊢ 1r |
| 58 |
16 57
|
cfv |
⊢ ( 1r ‘ 𝑓 ) |
| 59 |
58 34 33
|
co |
⊢ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) |
| 60 |
59 34
|
wceq |
⊢ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 |
| 61 |
56 60
|
wa |
⊢ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) |
| 62 |
51 61
|
wa |
⊢ ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) |
| 63 |
62 31 30
|
wral |
⊢ ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) |
| 64 |
63 29 30
|
wral |
⊢ ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) |
| 65 |
64 28 27
|
wral |
⊢ ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) |
| 66 |
65 26 27
|
wral |
⊢ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) |
| 67 |
25 66
|
wa |
⊢ ( 𝑓 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) |
| 68 |
67 23 22
|
wsbc |
⊢ [ ( .r ‘ 𝑓 ) / 𝑡 ] ( 𝑓 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) |
| 69 |
68 20 19
|
wsbc |
⊢ [ ( +g ‘ 𝑓 ) / 𝑝 ] [ ( .r ‘ 𝑓 ) / 𝑡 ] ( 𝑓 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) |
| 70 |
69 18 17
|
wsbc |
⊢ [ ( Base ‘ 𝑓 ) / 𝑘 ] [ ( +g ‘ 𝑓 ) / 𝑝 ] [ ( .r ‘ 𝑓 ) / 𝑡 ] ( 𝑓 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) |
| 71 |
70 15 14
|
wsbc |
⊢ [ ( ·𝑠 ‘ 𝑔 ) / 𝑠 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] [ ( +g ‘ 𝑓 ) / 𝑝 ] [ ( .r ‘ 𝑓 ) / 𝑡 ] ( 𝑓 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) |
| 72 |
71 12 11
|
wsbc |
⊢ [ ( Scalar ‘ 𝑔 ) / 𝑓 ] [ ( ·𝑠 ‘ 𝑔 ) / 𝑠 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] [ ( +g ‘ 𝑓 ) / 𝑝 ] [ ( .r ‘ 𝑓 ) / 𝑡 ] ( 𝑓 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) |
| 73 |
72 9 8
|
wsbc |
⊢ [ ( +g ‘ 𝑔 ) / 𝑎 ] [ ( Scalar ‘ 𝑔 ) / 𝑓 ] [ ( ·𝑠 ‘ 𝑔 ) / 𝑠 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] [ ( +g ‘ 𝑓 ) / 𝑝 ] [ ( .r ‘ 𝑓 ) / 𝑡 ] ( 𝑓 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) |
| 74 |
73 6 5
|
wsbc |
⊢ [ ( Base ‘ 𝑔 ) / 𝑣 ] [ ( +g ‘ 𝑔 ) / 𝑎 ] [ ( Scalar ‘ 𝑔 ) / 𝑓 ] [ ( ·𝑠 ‘ 𝑔 ) / 𝑠 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] [ ( +g ‘ 𝑓 ) / 𝑝 ] [ ( .r ‘ 𝑓 ) / 𝑡 ] ( 𝑓 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) |
| 75 |
74 1 2
|
crab |
⊢ { 𝑔 ∈ Grp ∣ [ ( Base ‘ 𝑔 ) / 𝑣 ] [ ( +g ‘ 𝑔 ) / 𝑎 ] [ ( Scalar ‘ 𝑔 ) / 𝑓 ] [ ( ·𝑠 ‘ 𝑔 ) / 𝑠 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] [ ( +g ‘ 𝑓 ) / 𝑝 ] [ ( .r ‘ 𝑓 ) / 𝑡 ] ( 𝑓 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) } |
| 76 |
0 75
|
wceq |
⊢ LMod = { 𝑔 ∈ Grp ∣ [ ( Base ‘ 𝑔 ) / 𝑣 ] [ ( +g ‘ 𝑔 ) / 𝑎 ] [ ( Scalar ‘ 𝑔 ) / 𝑓 ] [ ( ·𝑠 ‘ 𝑔 ) / 𝑠 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] [ ( +g ‘ 𝑓 ) / 𝑝 ] [ ( .r ‘ 𝑓 ) / 𝑡 ] ( 𝑓 ∈ Ring ∧ ∀ 𝑞 ∈ 𝑘 ∀ 𝑟 ∈ 𝑘 ∀ 𝑥 ∈ 𝑣 ∀ 𝑤 ∈ 𝑣 ( ( ( 𝑟 𝑠 𝑤 ) ∈ 𝑣 ∧ ( 𝑟 𝑠 ( 𝑤 𝑎 𝑥 ) ) = ( ( 𝑟 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑥 ) ) ∧ ( ( 𝑞 𝑝 𝑟 ) 𝑠 𝑤 ) = ( ( 𝑞 𝑠 𝑤 ) 𝑎 ( 𝑟 𝑠 𝑤 ) ) ) ∧ ( ( ( 𝑞 𝑡 𝑟 ) 𝑠 𝑤 ) = ( 𝑞 𝑠 ( 𝑟 𝑠 𝑤 ) ) ∧ ( ( 1r ‘ 𝑓 ) 𝑠 𝑤 ) = 𝑤 ) ) ) } |