Metamath Proof Explorer


Definition df-lnfn

Description: Define the set of linear functionals on Hilbert space. (Contributed by NM, 11-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion df-lnfn LinFn = { 𝑡 ∈ ( ℂ ↑m ℋ ) ∣ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑡 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 · ( 𝑡𝑦 ) ) + ( 𝑡𝑧 ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 clf LinFn
1 vt 𝑡
2 cc
3 cmap m
4 chba
5 2 4 3 co ( ℂ ↑m ℋ )
6 vx 𝑥
7 vy 𝑦
8 vz 𝑧
9 1 cv 𝑡
10 6 cv 𝑥
11 csm ·
12 7 cv 𝑦
13 10 12 11 co ( 𝑥 · 𝑦 )
14 cva +
15 8 cv 𝑧
16 13 15 14 co ( ( 𝑥 · 𝑦 ) + 𝑧 )
17 16 9 cfv ( 𝑡 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) )
18 cmul ·
19 12 9 cfv ( 𝑡𝑦 )
20 10 19 18 co ( 𝑥 · ( 𝑡𝑦 ) )
21 caddc +
22 15 9 cfv ( 𝑡𝑧 )
23 20 22 21 co ( ( 𝑥 · ( 𝑡𝑦 ) ) + ( 𝑡𝑧 ) )
24 17 23 wceq ( 𝑡 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 · ( 𝑡𝑦 ) ) + ( 𝑡𝑧 ) )
25 24 8 4 wral 𝑧 ∈ ℋ ( 𝑡 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 · ( 𝑡𝑦 ) ) + ( 𝑡𝑧 ) )
26 25 7 4 wral 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑡 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 · ( 𝑡𝑦 ) ) + ( 𝑡𝑧 ) )
27 26 6 2 wral 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑡 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 · ( 𝑡𝑦 ) ) + ( 𝑡𝑧 ) )
28 27 1 5 crab { 𝑡 ∈ ( ℂ ↑m ℋ ) ∣ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑡 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 · ( 𝑡𝑦 ) ) + ( 𝑡𝑧 ) ) }
29 0 28 wceq LinFn = { 𝑡 ∈ ( ℂ ↑m ℋ ) ∣ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑡 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 · ( 𝑡𝑦 ) ) + ( 𝑡𝑧 ) ) }