Metamath Proof Explorer


Definition df-lnm

Description: A left-module isNoetherian iff it is hereditarily finitely generated. (Contributed by Stefan O'Rear, 12-Dec-2014)

Ref Expression
Assertion df-lnm LNoeM = { 𝑤 ∈ LMod ∣ ∀ 𝑖 ∈ ( LSubSp ‘ 𝑤 ) ( 𝑤s 𝑖 ) ∈ LFinGen }

Detailed syntax breakdown

Step Hyp Ref Expression
0 clnm LNoeM
1 vw 𝑤
2 clmod LMod
3 vi 𝑖
4 clss LSubSp
5 1 cv 𝑤
6 5 4 cfv ( LSubSp ‘ 𝑤 )
7 cress s
8 3 cv 𝑖
9 5 8 7 co ( 𝑤s 𝑖 )
10 clfig LFinGen
11 9 10 wcel ( 𝑤s 𝑖 ) ∈ LFinGen
12 11 3 6 wral 𝑖 ∈ ( LSubSp ‘ 𝑤 ) ( 𝑤s 𝑖 ) ∈ LFinGen
13 12 1 2 crab { 𝑤 ∈ LMod ∣ ∀ 𝑖 ∈ ( LSubSp ‘ 𝑤 ) ( 𝑤s 𝑖 ) ∈ LFinGen }
14 0 13 wceq LNoeM = { 𝑤 ∈ LMod ∣ ∀ 𝑖 ∈ ( LSubSp ‘ 𝑤 ) ( 𝑤s 𝑖 ) ∈ LFinGen }