Step |
Hyp |
Ref |
Expression |
0 |
|
clno |
⊢ LnOp |
1 |
|
vu |
⊢ 𝑢 |
2 |
|
cnv |
⊢ NrmCVec |
3 |
|
vw |
⊢ 𝑤 |
4 |
|
vt |
⊢ 𝑡 |
5 |
|
cba |
⊢ BaseSet |
6 |
3
|
cv |
⊢ 𝑤 |
7 |
6 5
|
cfv |
⊢ ( BaseSet ‘ 𝑤 ) |
8 |
|
cmap |
⊢ ↑m |
9 |
1
|
cv |
⊢ 𝑢 |
10 |
9 5
|
cfv |
⊢ ( BaseSet ‘ 𝑢 ) |
11 |
7 10 8
|
co |
⊢ ( ( BaseSet ‘ 𝑤 ) ↑m ( BaseSet ‘ 𝑢 ) ) |
12 |
|
vx |
⊢ 𝑥 |
13 |
|
cc |
⊢ ℂ |
14 |
|
vy |
⊢ 𝑦 |
15 |
|
vz |
⊢ 𝑧 |
16 |
4
|
cv |
⊢ 𝑡 |
17 |
12
|
cv |
⊢ 𝑥 |
18 |
|
cns |
⊢ ·𝑠OLD |
19 |
9 18
|
cfv |
⊢ ( ·𝑠OLD ‘ 𝑢 ) |
20 |
14
|
cv |
⊢ 𝑦 |
21 |
17 20 19
|
co |
⊢ ( 𝑥 ( ·𝑠OLD ‘ 𝑢 ) 𝑦 ) |
22 |
|
cpv |
⊢ +𝑣 |
23 |
9 22
|
cfv |
⊢ ( +𝑣 ‘ 𝑢 ) |
24 |
15
|
cv |
⊢ 𝑧 |
25 |
21 24 23
|
co |
⊢ ( ( 𝑥 ( ·𝑠OLD ‘ 𝑢 ) 𝑦 ) ( +𝑣 ‘ 𝑢 ) 𝑧 ) |
26 |
25 16
|
cfv |
⊢ ( 𝑡 ‘ ( ( 𝑥 ( ·𝑠OLD ‘ 𝑢 ) 𝑦 ) ( +𝑣 ‘ 𝑢 ) 𝑧 ) ) |
27 |
6 18
|
cfv |
⊢ ( ·𝑠OLD ‘ 𝑤 ) |
28 |
20 16
|
cfv |
⊢ ( 𝑡 ‘ 𝑦 ) |
29 |
17 28 27
|
co |
⊢ ( 𝑥 ( ·𝑠OLD ‘ 𝑤 ) ( 𝑡 ‘ 𝑦 ) ) |
30 |
6 22
|
cfv |
⊢ ( +𝑣 ‘ 𝑤 ) |
31 |
24 16
|
cfv |
⊢ ( 𝑡 ‘ 𝑧 ) |
32 |
29 31 30
|
co |
⊢ ( ( 𝑥 ( ·𝑠OLD ‘ 𝑤 ) ( 𝑡 ‘ 𝑦 ) ) ( +𝑣 ‘ 𝑤 ) ( 𝑡 ‘ 𝑧 ) ) |
33 |
26 32
|
wceq |
⊢ ( 𝑡 ‘ ( ( 𝑥 ( ·𝑠OLD ‘ 𝑢 ) 𝑦 ) ( +𝑣 ‘ 𝑢 ) 𝑧 ) ) = ( ( 𝑥 ( ·𝑠OLD ‘ 𝑤 ) ( 𝑡 ‘ 𝑦 ) ) ( +𝑣 ‘ 𝑤 ) ( 𝑡 ‘ 𝑧 ) ) |
34 |
33 15 10
|
wral |
⊢ ∀ 𝑧 ∈ ( BaseSet ‘ 𝑢 ) ( 𝑡 ‘ ( ( 𝑥 ( ·𝑠OLD ‘ 𝑢 ) 𝑦 ) ( +𝑣 ‘ 𝑢 ) 𝑧 ) ) = ( ( 𝑥 ( ·𝑠OLD ‘ 𝑤 ) ( 𝑡 ‘ 𝑦 ) ) ( +𝑣 ‘ 𝑤 ) ( 𝑡 ‘ 𝑧 ) ) |
35 |
34 14 10
|
wral |
⊢ ∀ 𝑦 ∈ ( BaseSet ‘ 𝑢 ) ∀ 𝑧 ∈ ( BaseSet ‘ 𝑢 ) ( 𝑡 ‘ ( ( 𝑥 ( ·𝑠OLD ‘ 𝑢 ) 𝑦 ) ( +𝑣 ‘ 𝑢 ) 𝑧 ) ) = ( ( 𝑥 ( ·𝑠OLD ‘ 𝑤 ) ( 𝑡 ‘ 𝑦 ) ) ( +𝑣 ‘ 𝑤 ) ( 𝑡 ‘ 𝑧 ) ) |
36 |
35 12 13
|
wral |
⊢ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ( BaseSet ‘ 𝑢 ) ∀ 𝑧 ∈ ( BaseSet ‘ 𝑢 ) ( 𝑡 ‘ ( ( 𝑥 ( ·𝑠OLD ‘ 𝑢 ) 𝑦 ) ( +𝑣 ‘ 𝑢 ) 𝑧 ) ) = ( ( 𝑥 ( ·𝑠OLD ‘ 𝑤 ) ( 𝑡 ‘ 𝑦 ) ) ( +𝑣 ‘ 𝑤 ) ( 𝑡 ‘ 𝑧 ) ) |
37 |
36 4 11
|
crab |
⊢ { 𝑡 ∈ ( ( BaseSet ‘ 𝑤 ) ↑m ( BaseSet ‘ 𝑢 ) ) ∣ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ( BaseSet ‘ 𝑢 ) ∀ 𝑧 ∈ ( BaseSet ‘ 𝑢 ) ( 𝑡 ‘ ( ( 𝑥 ( ·𝑠OLD ‘ 𝑢 ) 𝑦 ) ( +𝑣 ‘ 𝑢 ) 𝑧 ) ) = ( ( 𝑥 ( ·𝑠OLD ‘ 𝑤 ) ( 𝑡 ‘ 𝑦 ) ) ( +𝑣 ‘ 𝑤 ) ( 𝑡 ‘ 𝑧 ) ) } |
38 |
1 3 2 2 37
|
cmpo |
⊢ ( 𝑢 ∈ NrmCVec , 𝑤 ∈ NrmCVec ↦ { 𝑡 ∈ ( ( BaseSet ‘ 𝑤 ) ↑m ( BaseSet ‘ 𝑢 ) ) ∣ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ( BaseSet ‘ 𝑢 ) ∀ 𝑧 ∈ ( BaseSet ‘ 𝑢 ) ( 𝑡 ‘ ( ( 𝑥 ( ·𝑠OLD ‘ 𝑢 ) 𝑦 ) ( +𝑣 ‘ 𝑢 ) 𝑧 ) ) = ( ( 𝑥 ( ·𝑠OLD ‘ 𝑤 ) ( 𝑡 ‘ 𝑦 ) ) ( +𝑣 ‘ 𝑤 ) ( 𝑡 ‘ 𝑧 ) ) } ) |
39 |
0 38
|
wceq |
⊢ LnOp = ( 𝑢 ∈ NrmCVec , 𝑤 ∈ NrmCVec ↦ { 𝑡 ∈ ( ( BaseSet ‘ 𝑤 ) ↑m ( BaseSet ‘ 𝑢 ) ) ∣ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ( BaseSet ‘ 𝑢 ) ∀ 𝑧 ∈ ( BaseSet ‘ 𝑢 ) ( 𝑡 ‘ ( ( 𝑥 ( ·𝑠OLD ‘ 𝑢 ) 𝑦 ) ( +𝑣 ‘ 𝑢 ) 𝑧 ) ) = ( ( 𝑥 ( ·𝑠OLD ‘ 𝑤 ) ( 𝑡 ‘ 𝑦 ) ) ( +𝑣 ‘ 𝑤 ) ( 𝑡 ‘ 𝑧 ) ) } ) |