Metamath Proof Explorer


Definition df-lno

Description: Define the class of linear operators between two normed complex vector spaces. In the literature, an operator may be a partial function, i.e., the domain of an operator is not necessarily the entire vector space. However, since the domain of a linear operator is a vector subspace, we define it with a complete function for convenience and will use subset relations to specify the partial function case. (Contributed by NM, 6-Nov-2007) (New usage is discouraged.)

Ref Expression
Assertion df-lno LnOp = ( 𝑢 ∈ NrmCVec , 𝑤 ∈ NrmCVec ↦ { 𝑡 ∈ ( ( BaseSet ‘ 𝑤 ) ↑m ( BaseSet ‘ 𝑢 ) ) ∣ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ( BaseSet ‘ 𝑢 ) ∀ 𝑧 ∈ ( BaseSet ‘ 𝑢 ) ( 𝑡 ‘ ( ( 𝑥 ( ·𝑠OLD𝑢 ) 𝑦 ) ( +𝑣𝑢 ) 𝑧 ) ) = ( ( 𝑥 ( ·𝑠OLD𝑤 ) ( 𝑡𝑦 ) ) ( +𝑣𝑤 ) ( 𝑡𝑧 ) ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 clno LnOp
1 vu 𝑢
2 cnv NrmCVec
3 vw 𝑤
4 vt 𝑡
5 cba BaseSet
6 3 cv 𝑤
7 6 5 cfv ( BaseSet ‘ 𝑤 )
8 cmap m
9 1 cv 𝑢
10 9 5 cfv ( BaseSet ‘ 𝑢 )
11 7 10 8 co ( ( BaseSet ‘ 𝑤 ) ↑m ( BaseSet ‘ 𝑢 ) )
12 vx 𝑥
13 cc
14 vy 𝑦
15 vz 𝑧
16 4 cv 𝑡
17 12 cv 𝑥
18 cns ·𝑠OLD
19 9 18 cfv ( ·𝑠OLD𝑢 )
20 14 cv 𝑦
21 17 20 19 co ( 𝑥 ( ·𝑠OLD𝑢 ) 𝑦 )
22 cpv +𝑣
23 9 22 cfv ( +𝑣𝑢 )
24 15 cv 𝑧
25 21 24 23 co ( ( 𝑥 ( ·𝑠OLD𝑢 ) 𝑦 ) ( +𝑣𝑢 ) 𝑧 )
26 25 16 cfv ( 𝑡 ‘ ( ( 𝑥 ( ·𝑠OLD𝑢 ) 𝑦 ) ( +𝑣𝑢 ) 𝑧 ) )
27 6 18 cfv ( ·𝑠OLD𝑤 )
28 20 16 cfv ( 𝑡𝑦 )
29 17 28 27 co ( 𝑥 ( ·𝑠OLD𝑤 ) ( 𝑡𝑦 ) )
30 6 22 cfv ( +𝑣𝑤 )
31 24 16 cfv ( 𝑡𝑧 )
32 29 31 30 co ( ( 𝑥 ( ·𝑠OLD𝑤 ) ( 𝑡𝑦 ) ) ( +𝑣𝑤 ) ( 𝑡𝑧 ) )
33 26 32 wceq ( 𝑡 ‘ ( ( 𝑥 ( ·𝑠OLD𝑢 ) 𝑦 ) ( +𝑣𝑢 ) 𝑧 ) ) = ( ( 𝑥 ( ·𝑠OLD𝑤 ) ( 𝑡𝑦 ) ) ( +𝑣𝑤 ) ( 𝑡𝑧 ) )
34 33 15 10 wral 𝑧 ∈ ( BaseSet ‘ 𝑢 ) ( 𝑡 ‘ ( ( 𝑥 ( ·𝑠OLD𝑢 ) 𝑦 ) ( +𝑣𝑢 ) 𝑧 ) ) = ( ( 𝑥 ( ·𝑠OLD𝑤 ) ( 𝑡𝑦 ) ) ( +𝑣𝑤 ) ( 𝑡𝑧 ) )
35 34 14 10 wral 𝑦 ∈ ( BaseSet ‘ 𝑢 ) ∀ 𝑧 ∈ ( BaseSet ‘ 𝑢 ) ( 𝑡 ‘ ( ( 𝑥 ( ·𝑠OLD𝑢 ) 𝑦 ) ( +𝑣𝑢 ) 𝑧 ) ) = ( ( 𝑥 ( ·𝑠OLD𝑤 ) ( 𝑡𝑦 ) ) ( +𝑣𝑤 ) ( 𝑡𝑧 ) )
36 35 12 13 wral 𝑥 ∈ ℂ ∀ 𝑦 ∈ ( BaseSet ‘ 𝑢 ) ∀ 𝑧 ∈ ( BaseSet ‘ 𝑢 ) ( 𝑡 ‘ ( ( 𝑥 ( ·𝑠OLD𝑢 ) 𝑦 ) ( +𝑣𝑢 ) 𝑧 ) ) = ( ( 𝑥 ( ·𝑠OLD𝑤 ) ( 𝑡𝑦 ) ) ( +𝑣𝑤 ) ( 𝑡𝑧 ) )
37 36 4 11 crab { 𝑡 ∈ ( ( BaseSet ‘ 𝑤 ) ↑m ( BaseSet ‘ 𝑢 ) ) ∣ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ( BaseSet ‘ 𝑢 ) ∀ 𝑧 ∈ ( BaseSet ‘ 𝑢 ) ( 𝑡 ‘ ( ( 𝑥 ( ·𝑠OLD𝑢 ) 𝑦 ) ( +𝑣𝑢 ) 𝑧 ) ) = ( ( 𝑥 ( ·𝑠OLD𝑤 ) ( 𝑡𝑦 ) ) ( +𝑣𝑤 ) ( 𝑡𝑧 ) ) }
38 1 3 2 2 37 cmpo ( 𝑢 ∈ NrmCVec , 𝑤 ∈ NrmCVec ↦ { 𝑡 ∈ ( ( BaseSet ‘ 𝑤 ) ↑m ( BaseSet ‘ 𝑢 ) ) ∣ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ( BaseSet ‘ 𝑢 ) ∀ 𝑧 ∈ ( BaseSet ‘ 𝑢 ) ( 𝑡 ‘ ( ( 𝑥 ( ·𝑠OLD𝑢 ) 𝑦 ) ( +𝑣𝑢 ) 𝑧 ) ) = ( ( 𝑥 ( ·𝑠OLD𝑤 ) ( 𝑡𝑦 ) ) ( +𝑣𝑤 ) ( 𝑡𝑧 ) ) } )
39 0 38 wceq LnOp = ( 𝑢 ∈ NrmCVec , 𝑤 ∈ NrmCVec ↦ { 𝑡 ∈ ( ( BaseSet ‘ 𝑤 ) ↑m ( BaseSet ‘ 𝑢 ) ) ∣ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ( BaseSet ‘ 𝑢 ) ∀ 𝑧 ∈ ( BaseSet ‘ 𝑢 ) ( 𝑡 ‘ ( ( 𝑥 ( ·𝑠OLD𝑢 ) 𝑦 ) ( +𝑣𝑢 ) 𝑧 ) ) = ( ( 𝑥 ( ·𝑠OLD𝑤 ) ( 𝑡𝑦 ) ) ( +𝑣𝑤 ) ( 𝑡𝑧 ) ) } )