Metamath Proof Explorer


Definition df-lnop

Description: Define the set of linear operators on Hilbert space. (See df-hosum for definition of operator.) (Contributed by NM, 18-Jan-2006) (New usage is discouraged.)

Ref Expression
Assertion df-lnop LinOp = { 𝑡 ∈ ( ℋ ↑m ℋ ) ∣ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑡 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 · ( 𝑡𝑦 ) ) + ( 𝑡𝑧 ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 clo LinOp
1 vt 𝑡
2 chba
3 cmap m
4 2 2 3 co ( ℋ ↑m ℋ )
5 vx 𝑥
6 cc
7 vy 𝑦
8 vz 𝑧
9 1 cv 𝑡
10 5 cv 𝑥
11 csm ·
12 7 cv 𝑦
13 10 12 11 co ( 𝑥 · 𝑦 )
14 cva +
15 8 cv 𝑧
16 13 15 14 co ( ( 𝑥 · 𝑦 ) + 𝑧 )
17 16 9 cfv ( 𝑡 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) )
18 12 9 cfv ( 𝑡𝑦 )
19 10 18 11 co ( 𝑥 · ( 𝑡𝑦 ) )
20 15 9 cfv ( 𝑡𝑧 )
21 19 20 14 co ( ( 𝑥 · ( 𝑡𝑦 ) ) + ( 𝑡𝑧 ) )
22 17 21 wceq ( 𝑡 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 · ( 𝑡𝑦 ) ) + ( 𝑡𝑧 ) )
23 22 8 2 wral 𝑧 ∈ ℋ ( 𝑡 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 · ( 𝑡𝑦 ) ) + ( 𝑡𝑧 ) )
24 23 7 2 wral 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑡 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 · ( 𝑡𝑦 ) ) + ( 𝑡𝑧 ) )
25 24 5 6 wral 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑡 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 · ( 𝑡𝑦 ) ) + ( 𝑡𝑧 ) )
26 25 1 4 crab { 𝑡 ∈ ( ℋ ↑m ℋ ) ∣ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑡 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 · ( 𝑡𝑦 ) ) + ( 𝑡𝑧 ) ) }
27 0 26 wceq LinOp = { 𝑡 ∈ ( ℋ ↑m ℋ ) ∣ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑡 ‘ ( ( 𝑥 · 𝑦 ) + 𝑧 ) ) = ( ( 𝑥 · ( 𝑡𝑦 ) ) + ( 𝑡𝑧 ) ) }