Step |
Hyp |
Ref |
Expression |
0 |
|
clo |
⊢ LinOp |
1 |
|
vt |
⊢ 𝑡 |
2 |
|
chba |
⊢ ℋ |
3 |
|
cmap |
⊢ ↑m |
4 |
2 2 3
|
co |
⊢ ( ℋ ↑m ℋ ) |
5 |
|
vx |
⊢ 𝑥 |
6 |
|
cc |
⊢ ℂ |
7 |
|
vy |
⊢ 𝑦 |
8 |
|
vz |
⊢ 𝑧 |
9 |
1
|
cv |
⊢ 𝑡 |
10 |
5
|
cv |
⊢ 𝑥 |
11 |
|
csm |
⊢ ·ℎ |
12 |
7
|
cv |
⊢ 𝑦 |
13 |
10 12 11
|
co |
⊢ ( 𝑥 ·ℎ 𝑦 ) |
14 |
|
cva |
⊢ +ℎ |
15 |
8
|
cv |
⊢ 𝑧 |
16 |
13 15 14
|
co |
⊢ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) |
17 |
16 9
|
cfv |
⊢ ( 𝑡 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) |
18 |
12 9
|
cfv |
⊢ ( 𝑡 ‘ 𝑦 ) |
19 |
10 18 11
|
co |
⊢ ( 𝑥 ·ℎ ( 𝑡 ‘ 𝑦 ) ) |
20 |
15 9
|
cfv |
⊢ ( 𝑡 ‘ 𝑧 ) |
21 |
19 20 14
|
co |
⊢ ( ( 𝑥 ·ℎ ( 𝑡 ‘ 𝑦 ) ) +ℎ ( 𝑡 ‘ 𝑧 ) ) |
22 |
17 21
|
wceq |
⊢ ( 𝑡 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( 𝑡 ‘ 𝑦 ) ) +ℎ ( 𝑡 ‘ 𝑧 ) ) |
23 |
22 8 2
|
wral |
⊢ ∀ 𝑧 ∈ ℋ ( 𝑡 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( 𝑡 ‘ 𝑦 ) ) +ℎ ( 𝑡 ‘ 𝑧 ) ) |
24 |
23 7 2
|
wral |
⊢ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑡 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( 𝑡 ‘ 𝑦 ) ) +ℎ ( 𝑡 ‘ 𝑧 ) ) |
25 |
24 5 6
|
wral |
⊢ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑡 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( 𝑡 ‘ 𝑦 ) ) +ℎ ( 𝑡 ‘ 𝑧 ) ) |
26 |
25 1 4
|
crab |
⊢ { 𝑡 ∈ ( ℋ ↑m ℋ ) ∣ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑡 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( 𝑡 ‘ 𝑦 ) ) +ℎ ( 𝑡 ‘ 𝑧 ) ) } |
27 |
0 26
|
wceq |
⊢ LinOp = { 𝑡 ∈ ( ℋ ↑m ℋ ) ∣ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑡 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( 𝑡 ‘ 𝑦 ) ) +ℎ ( 𝑡 ‘ 𝑧 ) ) } |